Download Print this page

Auber SYL-2342 Instruction Manual

Temperature controller

Advertisement

Quick Links

AUBER INSTRUMENTS
Instruction Manual
Caution
 This controller is intended to control equipment under normal operating
conditions. If failure or malfunction of the controller may lead to abnormal
operating conditions that may result in personal injury or damage to the
equipment or other property, devices (limit or safety controls) or systems
(alarm or supervisory) intended to warn of or protect against failure or
malfunction of the controller must be incorporated into and maintained as
part of the control system.
 Installing the rubber gasket supplied will protect the controller front panel
from dust and water splash (IP54 rating). Additional protection is needed for
higher IP rating.
 This controller carries a 90-day warranty. This warranty is limited to the
controller only.
1. Specifications
Input type
Thermocouple (TC): K, E, S, N, J, T, B, WRe5/ 26;
RTD (Resistance Temperature Detector): Pt100, Cu50
DC Voltage: 0~5V, 1~5V, 0~1V, -100~100mV, -
20~20mV, -5~5V, 0.2~1V
DC current: 0~10mA, 1~10mA, 4~20mA. (Use external
shunt resistor for higher current)
Input range
Please see section 4.7 for detail.
Accuracy
± 0.2% Full scale: RTD, linear voltage, linear current and
thermocouple input with ice point compensation or Cu50
copper compensation.
0.2% Full scale or ± 2 ºC: Thermocouple input with
internal automatic compensation.
Note: For thermocouple B, the measurement accuracy of
± 0.2% can only be guaranteed when input range is
between 600~1800 ºC.
Response time
≤ 0.5s (when FILt = 0)
Display resolution 1° C, 1° F; or 0.1° C
Control mode
Fuzzy logic enhanced PID control
On-off control
Manual control
Output mode
Relay contact (NO): 250VAC/7A, 120V/10A, 24VDC/10A
Alarm output
Relay contact (NO): 250VAC/1A, 120VAC/3A, 24V/3A
Alarm function
Process high alarm, process low alarm, deviation high
alarm, and deviation low alarm
Manual function
Automatic/Manual bumpless transfer
Power supply
85~260VAC/50~60Hz
Power
≤ 5 Watt
consumption
Ambient
0~50ºC, 32~122ºF
temperature
Dimension
48 x 48 x 100mm (W x H x D)
Mounting cutout
45 x 45mm
2. Available Configurations
All the models listed in Table 1 are 1/16 DIN size with dual-alarm outputs.
2016.05
SYL-2342 PID TEMPERATURE CONTROLLER
INSTRUCTION MANUAL
Version 5.3 (May 2016)
Table 1. Controller models.
Model
Control output
SYL-2342
Relay contact output
SYL-2342P
Relay contact output
3. Terminal Wiring
Figure 1. Wiring terminals of SYL-2342 and SYL-2342P.
3.1 Sensor connection
Please refer to Table 3 for the input sensor type (Sn) setting codes. The initial
setting for input is for a K type thermocouple. Set Sn to the right sensor code if
another sensor type is used.
3.1.1 Thermocouple
The thermocouple should be connected to terminals 4 and 5. Make sure that
the polarity is correct. There are two commonly used color codes for the K type
thermocouple. US color code uses yellow (positive) and red (negative).
Imported DIN color code uses red (positive) and green/blue (negative). The
temperature reading will decrease as temperature increases if the connection
is reversed.
When using ungrounded thermocouple that is in touch with a large conductive
subject, the electromagnetic field picked up by the sensor tip might be too large
for the controller to handle, the temperature display will change erratically. In
that case, connecting the shield of thermocouple to terminal 5 (circuit ground of
the controller) might solve the problem. Another option is to connect the
conductive subject to terminal 5.
3.1.2 RTD sensor
For a three-wire RTD with standard DIN color code, the two red wires should
be connected to the terminals 3 and 4. The white wire should be connected to
terminal 5. For a two-wire RTD, the wires should be connected to terminals 4
and 5. Jump a wire between terminals 3 and 4. Set controller input type, Sn to
21.
3.1.3 Linear input (V, mV, mA or resistance)
V and mA current signal inputs should be connected between terminals 2 and
5. Terminal 2 is positive. mV signal inputs should be connected between
terminals 4 and 5. Terminal 4 is positive. For resistance inputs, short terminals
3 and 4, then connect resistance inputs between terminals 4 and 5.
3.2 Power to the controller
The power cables should be connected to terminals 9 and 10. Polarity does not
matter. It can be powered by 85-260V AC power source. Neither a transformer
nor jumper is needed to wire it up. For the sake of consistency with the wiring
example described later, we suggest you connect the hot wire to terminal 9 and
neutral to 10.
WWW.AUBERINS.COM
Ramp/soak option
No
Yes
P1/8

Advertisement

loading

Summary of Contents for Auber SYL-2342

  • Page 1 Input type Thermocouple (TC): K, E, S, N, J, T, B, WRe5/ 26; RTD (Resistance Temperature Detector): Pt100, Cu50 Figure 1. Wiring terminals of SYL-2342 and SYL-2342P. DC Voltage: 0~5V, 1~5V, 0~1V, -100~100mV, - 20~20mV, -5~5V, 0.2~1V 3.1 Sensor connection DC current: 0~10mA, 1~10mA, 4~20mA.
  • Page 2 3.3 Control output connection ⑦ SET key: When it is pressed momentarily, the controller will switch the The relay output of the controller SYL-2342 can be used to turn on a contactor lower (SV) display between set value and percentage of output. When or a solenoid valve.
  • Page 3 AUBER INSTRUMENTS WWW.AUBERINS.COM Table 2. System parameters. Initial Code Description Setting Range Remarks P-SL P-SL Setting - 1 0 0 Display low limit ALM1 Process high alarm -1999~+9999° C or ° F ALM2 Process low alarm -1999~+9999° C or ° F...
  • Page 4 AUBER INSTRUMENTS WWW.AUBERINS.COM The things you should know about alarms At = 1. gets the controller ready to start the Auto tuning process by pressing the 1) Absolute alarm and deviation alarm A/M key. High (or low) limit absolute alarm is set by the specific temperatures that the alarm will be on.
  • Page 5 AUBER INSTRUMENTS WWW.AUBERINS.COM 1) In case of thermocouple or RTD input, dP is used to define temperature display resolution. dP = 0, temperature display resolution is 1 ºC (ºF). SV+Hy dP = 1, temperature display resolution is 0.1 ºC . The 0.1 degree resolution is When heating, At=0 only available for Celsius display.
  • Page 6: Wiring Examples

    FILt = 0 disables the filter. Figure 6. SYL-2342 or SYL-2342P control the heater directly by the internal 4.16 Manual and Automatic Control Mode Selection “A-M”...
  • Page 7 SV = 20. Note, P-SL and P-SH are calculated assuming the temperature/voltage relation Figure 8. SYL-2342 or SYL-2342P with thermocouple input. This is a typical of the TC is linear for the application range. We used 20 ºC temperature wiring set up for a 24V gas valve, hot water valve, or a contactor with 24V coil differences at 0 ºC for this calculation.
  • Page 8 If user connects a wire to terminal 5. For a two-wire RTD, connect the wires to terminals 4 and 5. contactor to SYL-2342’s terminal 7 and 8, please consider adding a RC Then, jump a wire between terminals 3 and 4.

This manual is also suitable for:

Syl-2352