Mitsubishi MSZ-FA-VA Service Technical Manual page 46

Table of Contents

Advertisement

2-22-2. Outline of main power supply circuit
1. At the start of operation
Main power supply circuit is formed when X64 (Relay) is turned ON at compressor startup.
To prevent rush current from running into the circuit when power supply is turned ON, R64A and R64B
(Current-limiting resistor) are placed in sub circuit.
2. At normal operation
1 When AC runs into noise filter P.C. board, its external noise is eliminated in the noise filter circuit.
2 After noise being eliminated from AC, it is rectified to DC by L (Reactor) and PFC (Power factor controller). If the operating
frequency becomes 25Hz or more, DC voltage rises to 370V.
3 DC voltage, to which has AC been rectified by process 2, is stabilized by CB1~3 (Smoothing capacitor) and supplied to
IPM (Intelligent power module).
4 The DC (Bus voltage), which has been stabilized in process 3, is converted to three-phase AC by IPM and supplied to
compressor.
5 CT1 and CT2 (Current Transformer), which are placed in the power supply circuit to compressor, are used to measure the
value of phase current and locate the polar direction of rotor with algorithm. PWM (Pulse width modulation) controls impre-
ssed voltage and frequency with those information.
3. Power factor improvement
Booster coil L (Reactor) and PFC rectify AC to DC and control its voltage.
In the motor drive system of sine wave control, power factor can be improved by reducing harmonics PFC and L (Reactor)
stabilize the voltage of DC supplied to inverter circuit and make its waveform smooth.
4. Power transistor module
IPM consists of the following components.
· Power Transistors (x6): Converts DC waveform to three-phase AC waveform and outputs it.
· Drive Circuit
· Protection circuit
Since the above components are all integrated in IPM, IPM has a merit that can get the control circuit simplified and mini-
aturized.
5. Smoothing capacitor
CB1, CB2 and CB3 stabilize the DC voltage and supply it to IPM.
6. Elimination of electrical noise
Noise filter circuit, which is formed by *CMC COILS and capacitors placed on the noise filter P.C. board, eliminates electrical
noise of AC power that is supplied to main power supply circuit. In short, common mode noise is absorbed in this circuit.
Moreover, normal mode noise is absorbed in another noise filter circuit which is formed by *NMC COILS and capacitors.
Both noise filter circuit exists for preventing the electrical noise generated in the inverter circuit from leaking out.
*CMC COILS; Common mode choke coils
*NMC COILS; Normal mode choke coils
2-22-3. Sine wave control
In these air conditioners, compressor equips brushless DC motor which doesn't have Hall element.
In short, the motor is sensorless. However, it's necessary to locate the polar direction of rotor in order to drive brushless DC
motor efficiently. The general detection method of the polar direction for such a DC motor is to locate it from the voltage induced
by unenergized stator.
Therefore, it is necessary to have a certain period of time in which the stator is being unenergized for the rotor position
detection when the voltage of supplied power is impressed.
So the motor has been driven by square wave control (the conventional motor drive system) which energizes the motor only
when the range of electrical angle is within 120_ because it is forced to be unenergized within 30_ at start & end of one heap
in one waveform cycle (180_) when the voltage is impressed.
However, torque pulsation occurs at rotation in this method when the current-carrying phases are switched over to other
phases in sequence. Therefore, sine wave control system is adopted for these air conditioners because it can make the
phase-to-phase current waveform smoother (sine wave) in order to drive the motor more efficiently and smoothly.
Downloaded from AC-Manual.com Manuals
: Drives transistors.
: Protects transistors from over current.
46

Hide quick links:

Advertisement

Table of Contents
loading

This manual is also suitable for:

Msz-ga-vaMuz-ga-vaMfz-ka-vaMuz-fa-va

Table of Contents