Heat Pump; Component Test; Adjustments; Set Gas Input Rate - Carrier 58MVP Installation, Start-Up, And Operating Instructions Manual

Variable-capacity condensing gas furnace
Table of Contents

Advertisement

The blower motor BLWM will revert to continuous-blower airflow
after the heating cycle is completed. In high-heat, the furnace
control CPU will drop the blower motor BLWM to low-heat
airflow during the selected blower-OFF delay period before
transitioning to continuous-blower airflow.
When the thermostat "calls for high-cooling", the blower motor
BLWM will operate at high-cooling airflow. When the thermostat
is satisfied, the blower motor BLWM will operate an additional 90
seconds at high-cooling airflow before transitioning back to
continuous-blower airflow.
When the R to G circuit is opened, the blower motor BLWM will
continue operating for an additional 5 seconds, if no other function
requires blower motor BLWM operation.
Continuous Blower Speed Selection from Thermostat
To select different continuous-blower speeds from the room
thermostat, momentarily turn off the FAN switch or push-
button on the room thermostat for 1-3 seconds after the blower
motor BLWM is operating. The furnace control CPU will shift
the continuous-blower airflow from the factory setting to the
next highest CF selection airflow as shown in Fig. 35.
Momentarily turning off the FAN switch again at the thermo-
stat will shift the continuous-blower airflow up one more
increment. If you repeat this procedure enough, you will
eventually shift the continuous-blower airflow to the lowest
CF selection as shown in Fig. 35. The selection can be
changed as many times as desired and is stored in the memory
to be automatically used following a power interruption.

HEAT PUMP

See Fig. 41-44 for thermostat connections.
When installed with a heat pump, the furnace control automatically
changes the timing sequence to avoid long blower off times during
demand defrost cycles. Whenever W/W1 is energized along with
Y1 or Y/Y2, the furnace control CPU will transition to or bring on
the blower motor BLWM at cooling airflow, low-heat airflow, or
the midrange airflow, whichever is the lowest. The blower motor
BLWM will remain on until the main burners ignite, then shut OFF
and remain OFF for 25 seconds before coming back on at heating
airflow. When the W/W1 input signal disappears, the furnace
control begins a normal inducer post-purge period while changing
the blower airflow. If Y/Y2 input is still energized, the furnace
control CPU will transition the blower motor BLWM airflow to
cooling airflow. If Y/Y2 input signal disappears and the Y1 input
is still energized, the furnace control CPU will transition the
blower motor BLWM to low-cooling airflow. If both the Y1 and
Y/Y2 signals disappear at the same time, the blower motor BLWM
will remain on at low-heat airflow for the selected blower-OFF
delay period. At the end of the blower-OFF delay, the blower
motor BLWM will shut OFF unless G is still energized, in which
case the blower motor BLWM will operate at continuous blower
airflow.

COMPONENT TEST

The furnace features a component test system to help diagnose a
system problem in the case of a component failure. To initiate the
component test procedure, ensure that there are no thermostat
inputs to the control and all time delays have expired. Turn on
setup switch SW1-6 (See Fig. 25.)
NOTE: The component test feature will not operate if the control
is receiving any thermostat signals or until all time delays have
expired.
The component test sequence is as follows:
a. The furnace control CPU turns the inducer motor IDM ON
at medium speed and keeps it ON through step c.
b. After waiting 15 seconds, the furnace control CPU turns
the hot surface igniter ON for 15 seconds, then OFF.
c. The furnace control CPU then turns the blower motor
BLWM ON at midrange airflow for 15 seconds, then OFF.
d. After shutting the blower motor BLWM OFF, the furnace
control CPU shuts the inducer motor IDM OFF.
NOTE: The EAC terminals are energized when the blower is
operating.
After the component test is completed, 1 or more status codes (11,
25, 41, or 42) will flash. See Service Label on blower access panel
or Service/Status Code Instructions for explanation of status codes.
NOTE: To repeat component test, turn setup switch SW1-6 to
OFF and then back ON.
Step 6—Adjustments

SET GAS INPUT RATE

Furnace gas input rate on rating plate is for installations at altitudes
up to 2000 ft.
In the U.S.A., the input rating for altitudes above 2000 ft must be
reduced by 2 percent for each 1000 ft above sea level.
In Canada, the input rating must be derated by 5 percent for
altitudes of 2000 ft to 4500 ft above sea level.
Adjust manifold pressure to obtain input rate.
Furnace input rate must be within ±2 percent of input rate on
furnace rating plate.
1. Determine natural gas orifice size and manifold pressure for
correct input.
a. Obtain average heat value (at installed altitude) from local
gas supplier.
b. Obtain average specific gravity from local gas supplier.
c. Verify furnace model. Table 12 can only be used for model
58MVP Furnaces.
d. Find installation altitude in Table 12.
NOTE: For Canadian altitudes of 2000 to 4500 ft, use U.S.A.
altitudes of 2001 to 3000 ft in Table 12.
e. Find closest natural gas heat value and specific gravity in
Table 12.
f. Follow heat value and specific gravity lines to point of
intersection to find orifice size and low- and high-heat
manifold pressure settings for proper operation.
EXAMPLE: (0—2000 ft altitude)
Heating value = 1050 Btu/cu ft
Specific gravity = 0.62
Therefore: Orifice No. 45
Manifold pressure: 3.8-in. wc for high heat
* Furnace is shipped with No. 45 orifices. In this example,
all main burner orifices are the correct size and do not need
to be changed to obtain proper input rate.
g. Check and verify burner orifice size in furnace. NEVER
ASSUME ORIFICE SIZE; ALWAYS CHECK AND
VERIFY.
38
1.6-in. wc for low heat

Hide quick links:

Advertisement

Table of Contents
loading

Table of Contents