Advertisement

Quick Links

Performance Comparison of Graphic
Equalisation and Active Loudspeaker Room
We compare the room response controls available in active loudspeakers to a third-octave graphical equaliser. The
room response controls are set using an automated optimisation method presented in earlier AES publications. A
third-octave ISO frequency constant-Q graphic equaliser is set to minimise the least squares deviation from linear
within the passband in a smoothed acoustical response. The resulting equalisation performance of the two methods
is compared using objective metrics, to show how these standard room response equalising methods perform. For all
loudspeaker models pooled together, the room response controls improve the RMS deviation from a linear response
from 6.1 dB to 4.7 dB (improvement 22%), whereas graphic equalisation improves the RMS deviation to 1.8 dB
(improvement 70%). Both equalisation techniques achieve a similar improvement in the broadband balance, which
has been shown to affect a subjective lack of colouration in sound systems. The optimisation time for a graphic
equaliser is up to 48 times longer compared to that for active loudspeaker room response controls.
1. INTRODUCTION
The purpose of room equalisation is to improve the
perceived quality of sound reproduction in a listening
environment. Electronic equalisation to improve the
subjective sound quality has been widespread for at
least 40 years (an early example is [1]). Equalisation is
prevalent in professional sound reproduction such as
recording studios, mixing rooms and sound rein-
forcement. In-situ response equalisation is often im-
plemented using third-octave equalisers, which are
normally set with the help of real time analysers. This
measurement and equalisation combination is cheap,
readily available and a relatively simple concept to
grasp with a little training [2-4]. Room response cor-
recting equalisers are now also increasingly built into
active loudspeakers, but these equalisers have an en-
tirely different approach as to how the equaliser ad-
dresses any acoustic problems of the reproduction.
Response Controls
Andrew Goldberg and Aki Mäkivirta
Genelec Oy, Olvitie 5, 74100 Iisalmi, Finland
ABSTRACT
Since the loudspeaker-room transfer function is of
substantially higher order than the equalisation filters,
the effect of either type of equalisation is to gently
shape the acoustic response [5]. The room transfer
function is position dependent, which poses major
problems for all equalisation techniques. At high fre-
quencies the required high-resolution correction can
become very position sensitive [6,7]. Even with these
limitations, in-situ equalisers have the potential to sig-
nificantly improve perceived sound quality. The prac-
tical challenge is to find the best compromise for the
parameters in the in-situ equaliser. An acceptable
equalisation is typically a compromise to minimise the
subjective coloration in the audio due to room effects.
Despite advances in psychoacoustics, it is difficult to
quantify what the listener actually perceives the sound
quality to be [8-10], or to optimise equalisation based
on that evaluation. Because of this, in-situ equalisation
typically attempts to obtain the best fit to some objec-

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the response controls and is the answer not in the manual?

Questions and answers

Summary of Contents for Genelec response controls

  • Page 1 Equalisation and Active Loudspeaker Room Response Controls Andrew Goldberg and Aki Mäkivirta Genelec Oy, Olvitie 5, 74100 Iisalmi, Finland ABSTRACT We compare the room response controls available in active loudspeakers to a third-octave graphical equaliser. The room response controls are set using an automated optimisation method presented in earlier AES publications. A third-octave ISO frequency constant-Q graphic equaliser is set to minimise the least squares deviation from linear within the passband in a smoothed acoustical response.
  • Page 2 GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON tively measurable target known to relate to the percep- with the centre frequency f , sampling frequency f tion of sound as being free from coloration, such as a gain of the resonance A, calculated from the dB-gain flat third-octave smoothed magnitude response.
  • Page 3 GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON 3.2. Graphic Equaliser Optimiser how the objective quality was improved. Further sta- tistical analysis is conducted on all measurements in With Q and centre frequency f fixed for each third- three frequency bands (Table 1) “LF”, “MF” and octave band, the remaining variable available for ad- “HF”, collectively called “subbands”...
  • Page 4 GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON indicated on the graphical output (Figure 2). The con- do not coincide with the centre frequencies of third- trol settings and before and after equalisation re- octave filter bands. A good example of this can be sponses are shown.
  • Page 5 GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON LF subband as indicated by the smaller errors bars. trated. Across all models, the broadband flatness is For all loudspeakers pooled together (Figure 1), the improved by 1.4 dB and the mean reduction in the LF equalisation reduces the variance in the median level subband RMS deviation is 2.0 dB.
  • Page 6 GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON Similar trends are seen for the three-way systems tion improved the RMS deviation to 1.8 dB (im- (Figure 11) except that the bass reduction averages –3 provement 70%). The main improvement is seen at to –5 dB and some additional roll-off shape is seen at low frequencies.
  • Page 7 643 (1982 Jul). controls improved the RMS deviation from 6.1 dB to 4.7 dB (improvement 22%), whereas graphic equalisa- [11] Genelec Oy, http://www.genelec.com (2004 tion improved the RMS deviation to 1.8 dB (im- Feb). provement 70%). The graphical equaliser achieves [12] Goldberg A.
  • Page 8 GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON Audio-EQ-Cookbook.txt, "Peaking EQ (parametric EQ block)” (2004 Feb). [16] ISO 266:1997 “Acoustics – Preferred Frequen- cies, 2nd Ed”, International Standards Organisation, Geneva (1997). [17] IEC 1260: 1995-07: “Electroacoustics - Oc- tave-band and fractional-octave-band filters, 1st Ed”, International Electrotechnical Commission, Geneva (1995).
  • Page 9: Appendix A - Room Response Control Case Study, Statistical Graphs

    GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON APPENDIX A – ROOM RESPONSE CONTROL CASE STUDY, STATISTICAL GRAPHS Figure 2. Case study optimisation results using room response control equalisation. Figure 3. Case study statistical output – box plot, histogram and normal probability plot before (upper) and after (lower) optimised room response control equalisation.
  • Page 10: Appendix B - Model Grouped Room Response Control Equalisation Summary

    GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON APPENDIX B – MODEL GROUPED ROOM RESPONSE CONTROL EQUALISATION SUMMARY Broad 25% to 75% Percentile Difference Change due to Room Response Control Equalisation Small Two-way Three-way Large Broad RMS Deviation Change due to Room Response Control Equalisation Small Two-way Three-way...
  • Page 11: Appendix C - Graphic Equaliser Case Study, Statistical Graphs

    GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON APPENDIX C – GRAPHIC EQUALISER CASE STUDY, STATISTICAL GRAPHS Magnitude Frequency Response - Finland, Gen Auditorium, 1036A, Left 1,000 10,000 Frequency [Hz] Figure 5. Unequalised in-situ acoustic measurement with smoothed and unsmoothed data. Table 2. Graphic equaliser settings. Centre Centre Centre...
  • Page 12 GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON Figure 7. Case study optimisation results using graphical equalisation. Figure 8. Case study statistical output – box plot, histogram and normal probability plot before (upper) and after (lower) optimised graphical equalisation. AES 116TH CONVENTION, BERLIN, GERMANY, 2004 MAY 8-11...
  • Page 13: Appendix D - Graphic Equaliser Statistical Graphs

    GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON APPENDIX D – GRAPHIC EQUALISER STATISTICAL GRAPHS Use of Graphic Equaliser - Small models (incl. 0dB settings) 1/3 Octave Frequency Band, Hz Level, dB Figure 9a. Use of the graphic equaliser for small 2-way systems – including 0dB settings. Use of Graphic Equaliser - Small models (excl.
  • Page 14 GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON Use of Graphic Equaliser - 2-way models (incl. 0dB settings) 1/3 Octave Frequency Band, Hz Level, dB Figure 10a. Use of the graphic equaliser for 2-way systems – including 0dB settings. Use of Graphic Equaliser - 2-way models (excl.
  • Page 15 GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON Use of Graphic Equaliser - 3-way models (incl. 0dB settings) 1/3 Octave Frequency Band, Hz Level, dB Figure 11a. Use of the graphic equaliser for 3-way systems – including 0dB settings. Use of Graphic Equaliser - 3-way models (excl.
  • Page 16 GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON Use of Graphic Equaliser - Large models (incl. 0dB settings) 1/3 Octave Frequency Band, Hz Level, dB Figure 12a. Use of the graphic equaliser for large systems – including 0dB settings. Use of Graphic Equaliser - Large Models (excl.
  • Page 17 GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON Use of Graphic Equaliser - All Models (incl. 0dB settings) 1/3 Octave Frequency Band, Hz Level, dB Figure 13a. Use of the graphic equaliser for all systems – including 0dB settings. Use of Graphic Equaliser - All Models (excl.
  • Page 18: Appendix E - Model Grouped Graphic Equalisation Summary

    GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON APPENDIX E – MODEL GROUPED GRAPHIC EQUALISATION SUMMARY Broad 25% to 75% Percentile Difference Change due to Graphic Equalisation Small Two-way Three-way Large Broad RMS Deviation Change due to Graphic Equalisation Small Two-way Three-way Large Figure 14.
  • Page 19: Appendix F - Comparison Of Equalisation Techniques Summary Graphs

    GOLDBERG AND MÄKIVIRTA OPTIMISED EQUALISATION COMPARISON APPENDIX F – COMPARISON OF EQUALISATION TECHNIQUES SUMMARY GRAPHS Broad 25% to 75% Percentile Difference Change between Equalisations Small Two-way Three-way Large RMS Deviation Change Broad between Equalisations Small Two-way Three-way Large Figure 15. The difference between the change in sound level deviation for the room response control and the graphic equalisation techniques for each subband and the broadband, quartile difference and RMS of deviation from the broadband median are plotted.

Table of Contents