Page 29
TA-TC on when failure Open collector Output Potentiometer input Analog Signal Output or analog voltage (0-10VDC or 0-20mA) input (0-10VDC) Analog current Analog Signal Output input (0-20mA) ( 0-20mA) RS485 COM Port 24V Power Output Port Applicable to model: ZVF300-G0R4S2~3R7S2 ZVF300-G0R4T2~7R5T2 ZVF300-G0R7T4~018T4 ZVF300-P5R5T4~022T4...
Page 30
Open collector Output Analog Signal Output Potentiometer input (0-10VDC or 0-20mA) or analog voltage input (0-10VDC) Analog current Analog Signal Output input (0-20mA) ( 0-20mA) Rs485 COM Port 24V Power Output Port diagram Applicable to model : ZVF300-G011T2~110T2 ZVF300-G022T4~630T4 ZVF300-P030T4~630T4...
Page 38
Terminal Types Function Description Electrical Specifications Symbols Public port Digital signal public terminal Valid only when there is a short circuit between Multi- Xn (n=1, 2, 3, 4,5, 6,7,8) INPUT, 0~24 power level, function and COM. The functions low level valid,5mA Input can be set by the parameter Terminal...
Page 39
OUTPUT, 0-10v DC voltage OUTPUT 0-20mA DC Current Programmable analog output with reference of GND. OUTPUT 0-20mA DC Current +24VDC NC : 240VAC-3A NO: 240VAC- 1A Communication signal positive 485+ Communication Terminal Communication signal negative 485-...
Page 54
Setting/Given Signal Feedback signal F0.01- Running channel source selection .F0.01=1-External terminal control F 0.03-Main frequency channel source selection. F0.03=5-PID Control F 5.00-Input terminal X1 function selection .F5.00=1-Forward Running. F 5.01- Input terminal X2 function selection .F5.01=7-External reset input. F ...
Page 55
F 9.06—Differential time Td. Set according to the actual request. F 9.07-Sampling cycle T: No need to change. F 9.08-Bias limit .Set according to the actual request. F 9.11— feedback gain :Set according to actual request. F ...
Chapter 6 Detailed function description Chapter 6 Detailed function description 6.1 Function Parameters 6.1.1 F0 Group Basic function Runn Factory Setting Range Code Name Min.Unit setting Modifi cation 0:NO PG vector control 1:V/F control 2:Torque control Speed control mode F0.00 ×...
Page 57
Chapter 6 Detailed function description 6.1.1 F0 Group Basic function Continued) Runn Factory Setting Range Code Name Min.Unit setting Modifi cation 0:Valid , save the parameters when the inverter is powered off 1:Valid .the value can not be saved Keyboard and when the inverter is powered off terminal F0.02...
Page 58
Chapter 6 Detailed function description 6.1.1 F0 Group Basic function(Continued) Runn Factory Setting Range Code Name Min.Unit setting Modifi cation keypad setting √ 0.00~F0.04(Max. Frequency) F0.07 0.01Hz 50.00Hz frequency Acceleration Depend on √ F0.08 0.1~3600.0s 0.1s time 1 the model Deceleration Depend on √...
Page 59
Chapter 6 Detailed function description 6.1.1 F0 Group Basic function Continued) Runn Factory Setting Range Code Name Min.Unit setting Modifi cation LED Unit’s Place: Operand 1 LED Decade: Operand 2 LED Hundreds place: Operand 3 Thousands place: Reserved 0:Keypad Potentiometer Combination 1:Keypad or Encoder √...
Page 60
Chapter 6 Detailed function description 6.1.2 F1 Group start and stop control Runn Factory Factory setting Code Name Min.Unit setting Modifi cation 0:Start directly × 1:DC braking and start F1.00 Start Mode 2:Speed tracking starting Direct starting √ F1.01 0.00~50.00Hz 0.01Hz 1.50Hz frequency...
Page 61
Chapter 6 Detailed function description 6.1.2 F1 Group start and stop control (Continued) Runn Factory Factory setting Code Name Min.Unit setting Modifi cation DC braking current √ F1.08 0.0~150.0% 0.1% 0.0% at stopping DC braking time √ 0.0~50.0s 0.1s 0.0s F1.09 at stopping Dead time of...
Page 62
Chapter 6 Detailed function description 6.1.3 F2 Group Motor parameters Runn Factory Factory setting Code Name Min.Unit setting Modifi cation 0:G Type Depend on Inverter Type × F2.00 1:P Type model Depend on ~ 0.1kW Motor rated power 700.0kW × F2.01 model Motor rated...
Page 63
Chapter 6 Detailed function description 6.1.4 F3 Group Vector control Runn Factory Factory setting Code Name Min.Unit setting Modifi cation Proportional gain ~ √ 10000 F3.00 1 of speed loop Integration time 1 √ F3.01 0.01s 2.00s 0.01~100.00s of speed loop Low switching point √...
Page 69
Chapter 6 Detailed function description 6.1.7 F6 Group Output terminal (continued ) Runn Factory Factory setting Code Name Min.Unit setting Modifi cation The lower limit √ ~ corresponding to 0.01V 0.00V F6.05 0.00 10.00V the AFM output AFM output √ 0.1% 100.0% F6.06...
Page 70
Chapter 6 Detailed function description 6.1.7 F6 Group Output terminal (continued ) Runn Factory Factory setting Code Name Min.Unit setting Modifi cation Y2 delay √ F6.15 0.1~3600.0s 0.1s 0.0s conduction time Y2 delay √ F6.16 0.1~3600.0s 0.1s 0.0s shut off time Relay delay √...
Page 71
Chapter 6 Detailed function description 8 F7 Group Human-machine interface Runn Factory Factory setting Code Name Min.Unit setting Modifi cation ~ √ The user password F7.00 65535 、 LED Unit’s Place Decade: Running status display options 0x00-0x1F The initial selection 、...
Page 72
Chapter 6 Detailed function description 8 F7 Group Human-machine interface(continued ) Runn Factory Factory setting Code Name Min.Unit setting Modifi cation 0~0xFFFF BIT0:Running frequency BIT1:Setting frequency BIT2:DC bus voltage BIT3:Output voltage BIT4:Output current BIT5:running rotation speed BIT6:output power Running state display BIT7:output torque √...
Page 73
Chapter 6 Detailed function description 8 F7 Group Human-machine interface(continued ) Runn Factory Factory setting Code Name Min.Unit setting Modifi cation IGBT module F7.09 0.1℃ 0~100.0℃ temperature 0.00~99.9 1.00 Software version F7.10 Accumulated 0~65535h F7.11 running time Runtime password ~ ×...
Page 74
Chapter 6 Detailed function description 8 F7 Group Human-machine interface(continued ) Runn Factory Factory setting Code Name Min.Unit setting Modifi cation 9:Input phase failure (LP) 10:Output short circuit(SC) 11:inverter overheat (OH1) 12:Motor overload(OL1) The previous 13:Inverter overload (OL2) F7.15 fault type 14:External fault (EF)...
Page 75
Chapter 6 Detailed function description 6.1.9 F8 Group-Enhanced function Runn Factory Factory setting Code Name Min.Unit setting Modifi cation Depend on √ F8.00 Acceleration time 2 0.1~3600.0s 0.1s the model Depend on √ F8.01 Deceleration time 2 0.1~3600.0s 0.1s the model Jog running √...
Page 76
Chapter 6 Detailed function description 6.1.9 F8 Group-Enhanced function(continued ) Runn Factory Factory setting Code Name Min.Unit setting Modifi cation 380V Series : √ 115.0~140.0% 0.1% 125.0% (Stardard DC bus voltage) Energy braking F8.16 threshold voltage 220V Series: 115.0~140.0% √ 0.1% 115.0% (Stardard DC bus voltage)...
Page 77
Chapter 6 Detailed function description 6.1.10 F9 Group PID control Runn Factory Factory setting Code Name Min.Unit setting Modifi cation 0:Keypad(set by F9.01) 1:Analog chanel AVI given 2:Analog chanel ACI given PID given √ F9.00 3:Remote communication given source selection 4:Multi-step speed given 5:keyboard direct given Keyboard preset...
Page 78
Chapter 6 Detailed function description 6.1.10 F9 Group PID control (continued ) Runn Factory Factory setting Code Name Min.Unit setting Modifi cation Feedback lost 0.0~100.0% √ 0.1% 0.0% F9.09 detecting value Feedback lost √ 0.0~3600.0s 1.0s F9.10 0.1s detecting time √...
Page 79
Chapter 6 Detailed function description 6.1.11 FA Multi- step speed control Runn Factory Factory setting Code Name Min.Unit setting Modifi cation LED Unit’s Place :PLC running mode selection 0:invalid 1:single circulation 2:continuous circulation 3:single circulation keep the final value . LED Decade;PLC input selection 0:automatic control 1:Terminal Control...
Page 85
Chapter 6 Detailed function description 6.1.11 FA Multi- step speed control(continued ) Runn Factory Factory setting Code Name Min.Unit setting Modifi cation 0.1S 0.0S √ FA.43 PLC Running Time 4 0.0-6553.5 S(Min) (min) (Min) 0.1S 0.0S √ FA.44 PLC Running Time 5 0.0-6553.5 S(Min) (min) (Min)
Page 86
Chapter 6 Detailed function description 6.1.12 Fb Protection function Runn Factory Factory setting Code Name Min.Unit setting Modifi cation 0:Disable. 1:normal motor Motor overload × (with low speed compensation) Fb.00 protection 2:variable frequency motor (without low speed compensation ) ~ Motor overload 20.0 120.0%...
Page 87
Chapter 6 Detailed function description 6.1.13 Fc Group communication parameters Runn Factory Factory setting Code Name Min.Unit setting Modifi cation ~ √ 247,0 is broadcast address FC.00 Local address : 1200bps 3:9600bps √ FC.01 aud rate selection 1:2400bps 4:19200bps 2:4800bps 5:38400bps 0:No parity(N,8,1)for RTU 1:Even parity(E,8,1)for RTU...
Page 88
Chapter 6 Detailed function description 6.1.13 Fc Group communication parameters (continued ) Runn Factory Factory setting Code Name Min.Unit setting Modifi cation : Alarm and coast to stop 1:Do not alarm and keep running 2:Do not alarm and stop at the Communication stopping method( only for √...
Page 89
Chapter 6 Detailed function description 6.1.14 Fd Group Supplementary function Runn Factory Factory setting Code Name Min.Unit setting Modifi cation Low-frequency ~ threshold of √ Fd.00 restraining oscillation High-frequency threshold of √ Fd.01 0~500 restraining oscillation Amplitude of √ Fd.02 0~100 restraining oscillation Threshold high-low...
Page 90
Chapter 6 Detailed function description 6.1.14 Fd Group Supplementary function (continued ) Runn Factory Factory setting Code Name Min.Unit setting Modifi cation ~ Keypad torque 200.0 200.0% √ Fd.07 0.1% 50.0% setting (the rated current of inverter) : Keypad setting upper limit frequency(F0.05)...
Page 91
Chapter 6 Detailed function description 6.2 Detailed function description F0 Group-Basic function F0.00 Speed control mode Setting Range: 0~3 Factory setting : 1 This function is used to select the control mode of the inverter. 0: NO PG vector control Sensorless vector control(SVC).It means open-loop vector contro, applied to occasions without PG,high-performance general-purpose , an inverter can drive a motor .
Page 92
Chapter 6 Detailed function description F0.01 Run command channel Setting Range:0~2 Factory setting: 0 This function is used to set the inverter receive the control mode which forward, reverse, jog and stop ect control command. 0: Keyboad command channel To control the inverter start and stop by the key RUN、STOP、REV/JOG On the keypad.
Page 93
Chapter 6 Detailed function description 2:UP/DOWN setting is valid . 3:valid during running ,the frequency setting value will be clear automatically when the inverter stops . When the factory setting is restored ,the value of keypad and UP/DOWN will be cleared . F0.03 Frequency command selection Setting range :0~12 Factory setting : 0...
Page 94
Chapter 6 Detailed function description 5 PID control setting The inverter mode is PID control when this parameter is selected .It’s necessary to set F9 group “PID control group”. The inverter running frequency is the frequency value after PIF control . and PID given source, Feedback source and so on, Please refer to F9 Group “PID function”...
Page 95
Chapter 6 Detailed function description Set the maximum output frequency of inverter .It’s thefoundation of frequency settings .and also the basis of speed acceleration and deceleration .Please pay attention to it. F0.05 Upper limit frequency Setting range:F0.06~F0.04 Factory Setting :50.00Hz F0.06 Lower limit frequency Setting range:0.00~F0.05 Factory Setting:0.00Hz...
Page 96
Chapter 6 Detailed function description The acceleration time is the time of accelerating from 0Hz to Maximum frequency. The deceleration time is the time of decelerating from maximum frequency to 0Hz. Please refer to the Figure6-1. Figure 6-1 Acceleration and deceleration time F0.10 Running direction selection Setting range:0~2 Factory setting: 0...
Page 97
Chapter 6 Detailed function description Setting Range of 220V Series 380V Series Carrier Frequency 0.4-3.7kW 0.75-7.5kW 1.0-15.0kHz Figure 6-2 Carrier frequency The advantage of high carrier frequency : ideal current waveform ,little current harmonic wave and motor noise . T he disadvantage of high carrier frequency L increasing the switch loss .inceasing the inverter termperature and the impact to the output catacity .the inverter needs to derate on high carrier frequency .at the time ,the leakage...
Page 98
Chapter 6 Detailed function description 1:Rotation autotuning Do not coonect any load to the motor when performing autotuning and ensure the motor is in static state. Input the nameplate parameters of motor ((F2.01~F2.05)) correctly before performing autotuning . Otherwise the parameter detected by autotuning will be incorrect .
Page 99
Chapter 6 Detailed function description F0.13 Restore parameters Setting range: 0~5 Factory setting: 0 : 0 No action 1:Restore the default value Restore all parameters F0~Fd to factory setting except F2 group. 2:Clear fault records Inverter clear all fault records. :...
Page 100
Chapter 6 Detailed function description LED Decade: Operand 2 0:Keypad Potentiometer 4:AVI 1:Keypad or Encoder 5:ACI 2:Reseve 6: External Pulse Setting 3:Communication 7: Multi-speed stage LED Hundreds place: Operand 3 0:Keypad Potentiometer 4:AVI 1:Keypad or Encoder 5:ACI 2:Reseve 6: External Pulse Setting 3:Communication 7: Multi-speed stage Thousands place:...
Page 101
Chapter 6 Detailed function description LED Hundreds 、Thousands place: Reserved. F0.15、F0.16 will be valid only when F0.03=11 ,The Parameter’s algorithm formula is shown below:(Operand 1) Algorithm 1 (Operand 2) Algorithm 2 (Operand 3) If the decade digit of F0.16 is set to 5, the operand 3 will anticipate in algorithm composed of two figures (Operand 1 and Operand 2).
Page 102
Chapter 6 Detailed function description 1: In addition to the digital frequency setting and this parameter,other parameters prohibited rewritten. F0.18 Acceleration and deceleration mode selection Setting Range :0~1 Factory Setting: 0 0:Linear Accel/Decel. The Output frequency increase or decreases with a constant rate . 1:S-Curve Accel/Decel To reduce the noise and vibration of the mechanical system,It can slowly change the output frequency at the initial and ending segments of Accel/Decel.as shown in...
Page 103
Chapter 6 Detailed function description F1 Group- Start and stop control F1.00 Start Mode Setting range: 0~2 Factory setting: 0 0:Start directly Start the motor at the starting frequency determined by F1.01. 1:DC braking and start DC braking at first (Refer to the parameters F1.03 and F1.04).then start the motor at the starting frequency .It is sutiable for the motor which have small inertia load and may reverse rotation when start .
Page 104
Chapter 6 Detailed function description Figure 6-4 Start and stop frequency output curve F1.03 DC braking current before start. Setting range:0.0~150.0% Factory setting:0.0 % F1.04 DC braking time before start Setting range:0.0~50.0s Factory setting:0.0s DC braking current before start: The inverter start at DC starting . the braking current percentage .
Page 105
Chapter 6 Detailed function description F1.05 Stop mode Setting range :0~1 Factory setting: 0 0:Ramp to stop When the stop command takes affect. The inverter decreases the output frequency according to the selected acceleration/deceleration time till stop. 1:Coast/Free stop When the stop command takes affect,the inverter blocks the output immediately. the motor coasts to stop by its mechanical inertia .
Page 106
Chapter 6 Detailed function description The current of DC braking at stopping set too high .The inverter is easy to trip . Please set the current from small to bigger . There is no DC braking when the DC braking time at stopping set to 0.0S.
Page 107
Chapter 6 Detailed function description 0:Command invalid when powered on . Although detected effective commandof terminal in process of powered on . the inverter will not run .the system is running is the protection state until withdrawal of the terminal operation command .and then enable the terminal.inverter will run . 1:Command valid when powered on That is to say when the inverter is in the process of powered on .
Page 108
Chapter 6 Detailed function description Hundred’s place Unit’s place Decade Place Figure 6-6 Terminal slection setting diagram F1.13 Power off Restart Mode Selection Setting range:0-2 Factory setting 0 0.Disabled 1.Regular Start 2.Start with rotary tracing F1.14 Power Cut Restart Wait Time Setting range: 0.0-20.0S Factory setting : 0.5S F2 Group- Motor parameters...
Page 109
Chapter 6 Detailed function description F2.02 Motor rated frequency Settig range:0.01-600.00Hz Factory setting:50.00Hz F2.03 Motor rated speed Settig range :0~36000rpm Factory setting: depend on model F2.04 Motor rated voltage Settig range:0~460V Factory setting: depend on model F2.05 Motor rated current Settig range:0.1~2000.0A Factory setting: depend on model In order to achieve superior performance .Please set these parameters according...
Page 110
Chapter 6 Detailed function description F2.10 Current without load Setting range :0.01~655.35A Factory setting: depend on model The above parameters is the necessary parameters for vector control . The value of F2.06~F2.10 will be sutomatically updated after auto tuning . Do not change these parameters arbitrarily .otherwise it may deteriotate the control performance of inverter .
Page 111
Chapter 6 Detailed function description By setting the ratio the speed regulator factors and integration time .you can adjust the speed of dynamic response characteristics of vector control .Increase the proportional gain .reducing the integtation time can speed up the daynamics of the corresponding ring .But the proportional gain is too large or too small intergtation time are easily lead to system oscillation .overshoot is too large .
Chapter 6 Detailed function description F3.08 Torque dynamic friction coefficient Setting range:0.000~1.000 Factory setting:0.125 F3.09 Empty load current compensation coefficients Setting range:0.000~9.999 Factory setting:0.800 F3.10 Torque static friction coefficient Setting range:0.00-10.00 Factory setting:2.00 Torque dynamic friction coefficient is used to adjust the operation of the motor torque value;...
Page 113
Chapter 6 Detailed function description 2:User-defined Setting V/F Curve When delecting this mode .just set the expected V/F curve through F4.06-F4.11. As shown in Fig.6-10. 3.1.25 Power V/F Curve 4.1.7 power V/F Curve 5. 3 power V/F Curve 6. 4 power V/F Curve Peameters values 3-6 aply to torque-dropped loadsp such as fans and water pumps.See Fig.6-9 Output voltage(V)
Page 114
Chapter 6 Detailed function description F4.02 Torque boost cutoff Setting range : 0.0~50.0% Factory setting : 20% Torque boost will take effect when output frequency is less than cut-off frequency of torque boost (F4.02).The boosting V/F curve as shown in 6-9(1).Torque boost can improve the torque performance of V/F control at low speed .
Page 115
Chapter 6 Detailed function description If the torque boost too high . It will appear the inverter over current protection . and will lead to the motor couldn’t start normally . At this time It is reasonable toIf the motor working at low frequency for long time .The heat dissipation will become bad .At this time .if the torque boosting value set too high and Intensified this phenomenon.
Page 116
Chapter 6 Detailed function description This function is applicable for fan and pump and other load. Auto energy saving running is invliad during acceleration and deceleration running . F4.05 Reserved F4.06 V/F Frequency Value F1 Setting range: 0.00~F4.08 Factory setting: 12.50Hz F4.07 V/F Voltage Value V1 Setting range: 0.00~F4.09 Factory setting:25.00%...
Page 118
Chapter 6 Detailed function description 0:No function 1:Forward running 2: Reverse running The inverter running command is given by the above terminal when the running command channel is terminal control . 3:3-Wire control Please refer to the description of P5.09. 4:Jog forward control 5: Jog reverse control Frequency acceleration and deceleration of jog running .Please refer to description...
Page 119
Chapter 6 Detailed function description Frequency UP/DOWN clearance is to clear the setting value through UP/DOWN .the given frequency to return to a given frequency by the frequency command channel. 12:Multi-step speed terminal 1 13: Multi-step speed terminal 2 14: Multi-step speed terminal 3 15: Multi-step speed terminal 4 16 steps speed control can be realized by the combination of these four terminal .
Page 120
Chapter 6 Detailed function description Table 6-1 Multi-step speed selection Multi-step Multi-step Multi-step Multi-step Multi-step speed speed speed speed speed selection terminal 4 terminal 3 terminal 2 terminal1 4th step of multi-step speed.The running frequency set by FA.04. 5th step of multi-step speed.The running frequency set by FA.05.
Page 121
Chapter 6 Detailed function description Table 6-1 Multi-step speed selection Multi-step Multi-step Multi-step Multi-step Multi-step speed speed speed speed speed selection terminal 4 terminal 3 terminal 2 terminal1 10th step of multi-step speed.The running frequency set by FA.10. 11th step of multi-step speed.The running frequency set by FA.11.
Page 122
Chapter 6 Detailed function description Table 6-1 Multi-step speed selection Multi-step Multi-step Multi-step Multi-step Multi-step speed speed speed speed speed selection terminal 4 terminal 3 terminal 2 terminal1 16 th step of multi-step speed.The running frequency set by FA.16. Note: ON stand for COM port connection . OFF stand for COM port disconnect . 16:Acceleration and deceleration time selection Select two kinds of acc.and dec.
Page 123
Chapter 6 Detailed function description 20:Acceleration and deceleration prohibition Ensure the inverter keeo away from the external signal (except the stopping command) and maintain the current output frequency . 21:Disable torque control The inverter will work shifting from torque control to speed control mode . 22:Clear frequency acc.and dec.
Page 124
Chapter 6 Detailed function description 30:PLC reset When selecting PLC function . whether automatically input or terminal manual input .Closing the terminal will clear the internal memory of PLC status infromation . Disconnect the terminal .PLC restart . 31:PLC input When PLC input model is terminal valid .
Page 125
Chapter 6 Detailed function description F5.09 Terminal control running mode Setting Range:0~3 Factory Setting :0. This parameter defines four different control modes that control the inverter operation through external terminal . 0:2-wire control mode 1 1:2-wire control mode 2 X1 setting : Forward running X2:Reverse running As shown in table 6-3 and table 6-11 Table 6-3 2-wire controlmode running command...
Page 126
Chapter 6 Detailed function description 2:3-wire control mode 1 Fig.6-12 3-wire control mode diagram 3:3-wire control mode 2 3-Wire control shown in 6-10.X1 set the Forward running .X2 is reverse running . X3 is 3-wire running control terminal . 3-wire control mode 1 3-wire control mode 2 K1----- running switch K1----- Forward...
Page 128
Chapter 6 Detailed function description For different applications . the corresponding value of100.0% analog setting is different . For details. Please refer to description of each application .as shown in Figure 6-13. 、linkage proportion setting . Figure 6-13 Analog given and setting F5.26 Center voltage hysteresis loop width Setting Range:0.00~10.00V Factory Setting:0.15V...
Page 129
Chapter 6 Detailed function description F6 Group-Output terminals F6.00 Y1 output selection Setting range:0~16 Factory setting: 1 F6.01 Y2 output selection Setting range:0~16 Factory setting: 2 F6.02 Relay output selection Setting range:0~16 Factory setting: 3 This group parameters defines the content represented by the open collector output terminals Y1, Y2, and relay.
Page 130
Chapter 6 Detailed function description 9:Running When the inverter is running .ON signal will be output . 10: PLC stage completed Upon the completion of current step of simple PLC running .ON signal with the width of 200ms will be output . 11:PLC cycle completed Upon the completion of a cycle of simple PLC running .ON signal with the width of 200ms will be output .
Page 131
Chapter 6 Detailed function description Table 6-4 analog AFM and digital DFM output signal Setting Fuction Range Running frequency 0~ Maximum frequency Setting frequency 0~Maximum frequency Motor speed 0~2 xrated synchronous speed of motor Output current 0~2 x inverter rated current Output Voltage 0~1.5 x inverter rated voltage Output power...
Page 132
Chapter 6 Detailed function description F6.10 The lower limit corresponding to the DFM output Setting range:0.00~10.0kHz Factory setting:0.0kHz F6.11 DFM output upper limiting Setting range:0.0~100.0% Factory setting:100.0% F6.12 The lower limit corresponding to the DFM output Setting range:0.00~10.00V Factory setting:10.0kHz The above function code determine the relationship between analog output voltage /current and the corresponding output value .when the analog output value exceeds the range between lower limit and upper limit.
Page 133
Chapter 6 Detailed function description F6.13 Y1 delay conduction time Setting Range :0.1~3600.0s Factory Setting: 0.0s F6.14 Y1 delay shut off time Setting Range:0.1~3600.0s Factory Setting: 0.0s F6.15 Y2 delay conduction time Setting Range:0.1~3600.0s Factory Setting: 0.0s F6.16 Y2 delay shut off time Setting Range:0.1~3600.0s Factory Setting: 0.0s The parameter is used to control the Y1, Y2 conduction and turn-off delay time.
Page 134
Chapter 6 Detailed function description the value of parameters F6.19.the corresponding multi-function output terminal (Setting counting value reached ). Output signal will be with a width of the effective period of 200ms, and the counter is cleared. When the count value of the counter reaches a predetermined value of F6.20, the corresponding multi-function output terminal (designated count value) output valid signal.
Page 135
Chapter 6 Detailed function description F7 Group-Human-machine interface F7.00 The user password Setting range: 0~65535 Factory setting :0 The password protection function will be valid when set to be any nonzero data . When F7.00 is set to be 0000, the user’s password set before will be cleared and the password protection gunction will be disable .
Page 136
Chapter 6 Detailed function description F7.02 Parameter copy Setting range : 0~4 Factory setting : 0 The parameter determines the method of parameter copy . 0:No operation 1:All parameters will be uploaded to keyboard . the functions parameters are copied to the keyboard. 2:All parameters will be download to the machine .
Page 137
Chapter 6 Detailed function description 3:Always valid The reset function of STOP/RESET Is always valid . F7.05 Gauge Range Decimal Place Setting range:0~3 Factory setting:2 F7.06 Running state display parameter selection 1 Setting range :0~0xFFFF Factory setting :0x00FF F7.07 Running state display parameter selection 2 Setting Range :0~0x3 Factory setting :0x0 The parameters will display the function code when the inverter is running .
Page 138
Chapter 6 Detailed function description F7.08 Stop state display parameter selection Setting range :0~0x7FF Factory setting:0x40F The setting of this function code is the same as that of F7.06. when the inverters are in the stopping state . the displaying of the parameter is determined by the function code.
Page 139
Chapter 6 Detailed function description Setting as below: 1、F7.12 must be greater than 10, F7.13 must not be 0, if the password is greater than 10 and the time setting is 0, reported fault “over”; if the password is less than 10, the time setting is not 0, limit invalid.
Page 140
Chapter 6 Detailed function description The state of current fault input terminal is displayed as decimal figures.Display the state of all digital input terminals at the latest fault . The order is : BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 Current input terminal is ON and the corresponding bit is 0.
Page 141
Chapter 6 Detailed function description F8.02 Jog frequency Setting range:0.00~F0.04 Factory setting:5.00Hz F8.03 Jog acceleration time Setting range:0.1~3600.0s Factory setting:Depend on model F8.04 Jog deceleration time Setting range:0.1~3600.0s Factory setting:Depend on model The meaning and factory setting of F8.02-f8.04 are shown as Figure 6-16. Figure 6-16 Jog running frequency and Acc./Dec.
Page 142
Chapter 6 Detailed function description F8.05 Skip frequency Setting range :0.00~F0.04 Factory setting :0.00Hz F8.06 Skip frequency bandwidth Setting range :0.00~F0.04 Factory setting :0.00Hz The settings of F8.05 -F8.06 is mainly to keep the inverter awya from the mechanical resonance with the load , you can set a skip frequency point. When the skip frequency point is set to 0, the skip frequency is invalid .
Page 143
Chapter 6 Detailed function description F8.09 Rise time of traverse Setting range :0.1~3600.0s Factory setting:5.0s F8.10 Fall time of traverse Setting range:0.1~3600.0s Factory setting:5.0s Traverse operation is widely used in textile and chemincal fiber industry . The typical application is hown in the following figure . Traverse function means the output frequency of the inverter wobbles with reference frequency as the centre .
Page 144
Chapter 6 Detailed function description F8.11 Fault auto reset times Setting range :0~9999 Factory setting :0 F8.12 Fault reset interval time Setting range:0.1~100.0s Factory setting:1.0s Auto reset times: when the inverter selects auto reset times . This parameter is used to set the times of auto reset .But if the inverter reset continuously for more than the set time .the inverter will stop for fault and the user has to deal with the problem by hands.
Page 145
Chapter 6 Detailed function description F8.15 Frequency arrival detecting range Setting range :0.0~100.0% Factory setting :0.0% When the output frequency is within the positive and negative deteacting range of the setting frequency . The selected output terminal is valid output signal (low level), As shown in Figure 6-20.
Page 146
Chapter 6 Detailed function description F8.19 Inverter overload pre-alram selection Setting Range:00~12 Factory setting: 00 LED bit.overload pre-alarm detection selection 0: No detection 1: Running Detection 2:Constant speed detection LED ten digit. overload pre-alarm action selection 0: No alarm, continue running 1: OL3 alarm, stop running.
Page 147
Chapter 6 Detailed function description F8.22 The decrease rate of droop control frequency Setting Range :0.00~15.00% Factory Setting : 0.00% The inverter output frequency will vary with load . mainly used to drive the power balance of the same load for multi-motor . The proportional gain of ENA frequency increases .
Page 148
Chapter 6 Detailed function description Target value Figure 6-22 PID control diagram F9.00 PID given source selection Setting range :0~5 Factory setting :0 0:Keypad(F9.01) 1:Analog chanel AVI given 2:Analog chanel ACI given 3:Remote communication given 4:Multi-step speed given 5: keyboard direct given When frequency source select PID , F0.03 set to 5.F9 group function will be effect .
Page 149
Chapter 6 Detailed function description Select F9.00 = 0, the target source is the keyboard given . This parameter is the reference value as the amount of feedback. F9.02 PID feedback source selection Setting range :0~3 Factory setting :0 0:Analog channel AVI feedback 1:Analog channel ACI feedback 2:AVI+ACI feedback 3: Remote communication feedback...
Page 150
Chapter 6 Detailed function description F9.05 Integral time Ti Setting range:0.01~100.00s Factory setting:0.10s The Integral time Ti determines the ratio between the output frequency change speed and deviation. Integral role is the output value will integrate according to the deviation , to eliminate the deviation of feedback value and given value . Integration time is too large, the response is slow, slow response to external disturbances.
Page 151
Chapter 6 Detailed function description Bias limit defines the maximum bias between the feedback and the preset . PID stops operation when the bias is within this range . Setting this parameter correctly is helpful to improve the system output accuracy and stability . Figure 6-23 Bias limit action diagram F9.09 Feedback lost detecting value Setting range:0.0~100.0%...
Page 152
Chapter 6 Detailed function description F9.12 Awakening threshold range Setting range:0.00~F9.16 Factory setting:0.50 MPa F9.13 Awakening threshold detection time Setting range:0.00~360.00s Factory setting:1.00s F9.14 Sleep Frequency Setting range:0.00~F0.04 Factory setting:.30.00Hz F9.15 Sleep Frequency Detection Time Setting range:0.00~360.00s Factory setting:1.00s F9.12 is the water supply system of the pressure threshold from sleep into the working state .
Page 153
Chapter 6 Detailed function description F9.16 The gauge range Setting Range :0.00~20.00MPa Factory Setting: 20.00MPa The parameter is used to set the gauge range . F9.17 PID preset frequency Setting Range :0.00~F0.05 Factory Setting:0.00Hz F9.18 Preset frequency maintain time Setting Range:0.00~360.00s Factory Setting:0.00s This parameter is used to set the PID running frequency and time before running.
Page 154
Chapter 6 Detailed function description PLC Thousands place: PLC power failure save selection. 0:Non-save after power off 1:save after power off Detailed functions of the operating mode 1:Simple PLC Simple PLC is the inverter can automationcally stop after multi-step speed running completed a cycle .
Page 155
Chapter 6 Detailed function description 2:Continuous Cycle The inverter multi-step running repeatedly cycle, the inverter will stop unless stop command given, shown in Figure 6-26 Fig.6-26 PLC / multi-speed continuous cycle running 3:Keep the final value after a single cycle The inverter complete a single cycle .
Page 158
Chapter 6 Detailed function description LINEAR OPERATION Output Frequency STEP 7 STEP 8 STEP 6 STEP 9 STEP 5 STEP 10 STEP 4 STEP 11 STEP 3 Step STEP 12 Time STEP 2 STEP 13 STEP 1 STEP 14 Time 2: Mode 2 (No wait time) -Gradual operation In gradual operation frequency “F”...
Page 159
Chapter 6 Detailed function description Multi-speed takes precedence over the keyboard, analog communication frequency input, can select up to 16 steps speed through a combination of coding Xn,specifically refer to the instructions F5 group parameter. the start and stop chanel selection of multi-speed running are also determined by the function code F0.01.
Page 161
Chapter 6 Detailed function description Setting Range: Unit’s Place : Multi-Speed 13 FA.20-FA.27. Decade: Multi-Speed 14 FA.20-FA.27. Hundreds place : Multi-Speed 15 FA.20-FA.27. Thousands place :Multi-Speed 16 FA.20-FA.27. FA.36 Direction Selection 1 Factory Setting: 0x0000 Setting Range Unit’s Place : Multi-Speed 1 (0-1) 0:Forward 1:Reverse Decade: Multi-Speed 2 (0-1) 0:Forward 1:Reverse...
Page 162
Chapter 6 Detailed function description FA.39 Direction Selection 4 Factory Setting: 0x0000 Setting Range Unit’s Place : Multi-Speed 13 (0-1) 0:Forward 1:Reverse Decade: Multi-Speed 14 (0-1) 0:Forward 1:Reverse Hundreds place: Multi-Speed 15 (0-1) 0:Forward 1:Reverse Thousands place: Multi-Speed 16 (0-1) 0:Forward 1:Reverse FA.40 PLC Running Time 1 Setting Range : 0.0-6553.5 S(Min) Factory Setting : 0.0S(Min)
Page 163
Chapter 6 Detailed function description FA.50 PLC Running Time 11 Setting Range : 0.0-6553.5 S(Min) Factory Setting : 0.0S(Min) FA.51 PLC Running Time 12 Setting Range : 0.0-6553.5 S(Min) Factory Setting : 0.0S(Min) FA.52 PLC Running Time 13 Setting Range : 0.0-6553.5 S(Min) Factory Setting : 0.0S(Min) FA.53 PLC Running Time 14 Setting Range : 0.0-6553.5 S(Min)
Page 164
Chapter 6 Detailed function description Fb.01 Motor overload protection current Setting range:20.0~120.0% Factory setting:100.0% If the power rating of the inverter do not match with the motor , you can modify the parameters to achieve the purpose of protecting the motor. as shown in Figure 6-28. The value cn be determined by the following formula : Motor overload protection current=(motor rated current/inverter rated current)*100%.
Page 165
Chapter 6 Detailed function description Momentary power drop frequency point enable the inverter to perform low voltage compensation when DC bus voltage drops below Fb.02. the inverter can continue to run without tripping by reducing its output frequency and feedback energy via motor. Please adjust these two parameters properly .It can avoid in the switch of the power grid .
Page 166
Chapter 6 Detailed function description Figure 6-29 Over voltage stall function Fb.06 Auto current limiting threshold Setting range: 20~200% Factory Setting: 160% Fb.07 Frequency decrease rate when current limiting Setting range: 0.00~100.00Hz/s Factory Setting: 10.00Hz/s Auto current limiting is used to limit the current of inverter smaller than the value determined by Fb.06 in real time.
Page 167
Chapter 6 Detailed function description Note: * During auto current limiting process, the inverter's output frequency may change; therefore, it is recommended not to enable the function when requires the inverter's output frequency stable. * During auto current limiting process, if Fb.06 is too low, the overload capacity will be impacted.
Page 168
Chapter 6 Detailed function description The software detection is only valid for the model G030T4/P037T4and G015T2 and below power.No hardware detection.While there have software and hardware options when the inverter is power bigger than 30kW. Fb.09 Under load protection current Setting Range:0~150.0 Factory Setting:0 Fb.10 Under load protection Time...
Page 169
Chapter 6 Detailed function description 0:1200BPS 1:2400BPS 2:4800BPS 3:9600BPS 4:19200BPS 5:38400BPS FC.02 Data bit check setting Setting Range : 0~17 Factory Setting :1 This parameter defines the baud rate in serial communication, and data format used in protocols , only a consistent format can be normal communication. 0:No parity check (...
Page 170
Chapter 6 Detailed function description The upper computer and the data format of the inverter must be consistent . Otherwise , Communication can't work . FC.03 Communication answer delay time Setting range: 0~200ms Factory Setting: 5ms Answer delay: The interval time between the data receiving of the inverter and data sending to the upper monitor.
Page 171
Chapter 6 Detailed function description 3: Do not alarm and stop at the stopping method (for all communication control modes ) In the abnormal situation, the inverter can act through setting communication fault processing. The selected running state of the inverter is: shield the CE fault, stop or keep running.
Page 172
Chapter 6 Detailed function description 0:Keypad or Encoder Setting(FC.08) 1:Annlog AVI setting 2:Annlog ACI setting 3:Multi-stage setting 4:Keyboard or encoder direct setting Fd Group Supplementary function Fd.00 Low-frequency threshold of restraining oscillation Setting range: 0~500 Factory Setting: 5 Fd.01 High-frequency threshold of restraining oscillation Setting range: 0~500 Factory Setting:5 Most motors may have current oscillation at some frequency point.
Page 173
Chapter 6 Detailed function description Fd.04 Restrain oscillation ~ Setting range:0 1 Factory setting:1 0:Enabled 1:Disabled Motor always has current oscillation when its load is light. This will cause abnormal operation even over-current. For details, please refer to description of Fd.00~Fd.03. Fd.05 PWM mode Setting range: 0~2 Factory Setting: 0...
Page 174
Chapter 6 Detailed function description If Tset<Tload,output frequency will decrease continuously until it reaches lower frequency limit. Inverter can run at any frequency between upper and lower frequency limit only when Tset=Tload。 Torque control can be seitched to speed control, vice versa. Switching by multi-functional terminal: For example, if torque control is enabled (P0.00=2), torque setting source is AVI, the value of multi-function terminal S5 is set to 20 (Disable torque control).
Page 175
Chapter 6 Detailed function description The 100% of this parameter is corresponding to 100% of F0.04 ( maximum frequency ). When running at torque control mode, output frequency can be adjusted by changing upper frequency limit. Fd.09 Auto current limiting selection Setting range:0~1 Factory Setting:0 0: Enabled when constant speed...
Page 178
① Reaches the overload Inverter ① Check the load pre-alarm level, overload ② Set the appropriate Overload ② Overload pre-alarm pre-alarm pre-alarm value value is set improperly arrived -173-...
Page 190
9.2 Keypad Outline Dimension & Mounting Dimension Fig. 9-4 Dimension of E-300 keypad Extra mounting frame shall be assembled when E-300 operation panel is pulled out to install. T wo installation frame are below :Fig.9-5 .Fig 9-6. Fig.9-5 Hole dimension 1 of keypad. Fig.9-6 Hole dimension 2 of keypad -185-...
Page 214
Parameter Address Function Description Description Feature Inverter x.xx stand for parameter number. Fx.xxH For example :F5.05 expressed by setting parameter 0505H . 0001H Forward running 0002H Reverserunning 0003H Jog forward 0004H Jog reverse Control 1000H command 0005H Stop 0006H Coast to stop 0007H Reset fault 0008H...
Page 215
3000H Running frequency 3001H Setting frequency 3002H Output current 3003H Output voltage 3004H Output rotation speed 3005H Output power Monitor 3006H Output torque parameter 3007H DC bus voltage 3008H PID setting value 3009H PID feedback value 300AH Input terminal state 300BH Output terminal state 300CH...
Page 216
Data Fault Type Data Fault Type No fault Motor overload ( OL1 ) Over-current when Inverter overload acceleration ( ocA) (OL2) Over-current when External fault ( EF) deceleration ( ocd) Over-current when constant RS485 communication fault speed running ( ocn) (CE-1)...
Page 218
No fault Command code error Illegal address Illegal data 04H ~ 05H Reserved Inverter is busy Communication 5001H 07H ~ 09H Reserved fault address Password error Check error Invalid modified parameters System locked Illegal of data number -213-...
Need help?
Do you have a question about the ZVF300 and is the answer not in the manual?
Questions and answers