AXIOMATIC AX030210 User Manual

AXIOMATIC AX030210 User Manual

12 input, 8 signal output & 1 relay output controller with canopen
Table of Contents

Advertisement

Quick Links

USER MANUAL UMAX030211
12 Input, 8 Signal Output
& 1 Relay Output Controller
with CANopen®
USER MANUAL
P/N: AX030211
 

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the AX030210 and is the answer not in the manual?

Questions and answers

Subscribe to Our Youtube Channel

Summary of Contents for AXIOMATIC AX030210

  • Page 1 USER MANUAL UMAX030211 12 Input, 8 Signal Output & 1 Relay Output Controller with CANopen® USER MANUAL P/N: AX030211  ...
  • Page 2 • Hours of operation, description of problem Gateways, CAN/Modbus Protocols • Wiring set up diagram, application • Other comments as needed Gyroscope Inclinometers All products should be serviced by Axiomatic. Do not open the product and Hydraulic Valve Controllers perform the service yourself. DISPOSAL Inclinometers, Triaxial Axiomatic products are electronic waste.
  • Page 3 VERSION HISTORY Version Date Author Modification 1.0.0. Aug 16, 2019 Antti Keränen Initial Version 1.0.1. Feb 24, 2020 Antti Keränen Objects 6340h, 7341h and 2353h added. Firmware reflashing instructions added. Resistive input’s defaults updated in section 2.1. April 21, 2020 Amanda Wilkins Added Marine TAC, CE marking and Vibration test results...
  • Page 4 ACRONYMS BATT +/- Battery positive (a.k.a. Vps) or Battery Negative (a.k.a. GND) Control Area Network CANopen ® CANopen ® is a registered community trademark of CAN in Automation e.V. CAN-ID CAN (11-bit or 29-bit) Identifier Communication Object CTRL Control Electronic Data Sheet EMCY Emergency Ground reference (a.k.a.
  • Page 5: Table Of Contents

    LIST OF CONTENTS  OVERVIEW OF THE CONTROLLER ........................12     CONTROLLER FUNCTION BLOCKS ........................14     2.1. Input Function Blocks ............................14     2.1.1. Resistive Input ............................. 20     2.1.2. Digital Input ..............................20     2.2. Output Function Blocks............................ 22  ...
  • Page 6 4.2.10. 1020h Verify Configuration .......................... 51     4.2.11. 1029h Error Behavior ........................... 52     4.2.12. 1400h RPDO 1 Communication Parameters ....................52     4.2.13. 1401h RPDO 2 Communication Parameters ....................52     4.2.14. 1402h RPDO 3 Communication Parameters ....................52  ...
  • Page 7 4.3.12. 7300h AO Output Process Value ........................ 60     4.3.13. 7320h AO Output Scaling 1 PV ........................60     4.3.14. 7321h AO Output Scaling 2 FV ........................60     4.3.15. 7322h AO Output Scaling 1 PV ........................60  ...
  • Page 8 4.4.29. 2460h PID Output FV ..........................68     4.4.30. 2500h EC Extra Received PV ........................68     4.4.31. 2502h EC Decimal Digits PV ........................69     4.4.32. 2520h EC Scaling 1 PV ..........................69     4.4.33. 2522h EC Scaling 2 PV ..........................
  • Page 9 4.4.69. 5010h Constant Field Value ........................75     4.4.70. 5020h Power Supply FV ..........................76     4.4.71. 5030h CPU Temperature FV ........................76     4.4.72. 5040h FD Field Value ..........................76     4.4.73. 5041h FD Set Threshold ..........................76  ...
  • Page 10 LIST OF TABLES  Table 1 – Object 6112h - AI Operating Mode Options ....................14   Table 2 – Object 6110h - AI Sensor Type Options ......................14   Table 3 – AI Input Range Options Depending on Sensor Type ..................15  ...
  • Page 11 LIST OF FIGURES  Figure 1 – AX030210 Block Diagram ..........................12   Figure 2 – Analog Input Objects ............................14   Figure 3 – Digital Input Debouncing ..........................16   Figure 4 – Analog Input Linear Scaling FV to PV ......................17  ...
  • Page 12 REFERENCES TDAX030210 Technical Datasheet, 12 Inputs, 8 Signal Outputs & 1 Relay Output Controller with CAN, Axiomatic Technologies 2018 [DS-301] CiA DS-301 V4.1 – CANopen Application Layer and Communication Profile. CAN in Automation 2005 [DS-305] CiA DS-305 V2.0 – Layer Setting Service (LSS) and Protocols. CAN in...
  • Page 13: Overview Of The Controller

      1. Overview of The Controller  Figure 1 – AX030210 Block Diagram The 12 Input, 8 Signal Outputs & 1 Relay Output Controller with CANopen (later 12IN-8SOUT-CO) is designed for extremely versatile control of up to eight signal outputs for generating control signals and one relay output to drive other loads.
  • Page 14   Signal outputs can be configured to generate voltage and current signals. Any of the eight signal outputs can be configured to use any of the on-board inputs as either a control signal or an enable signal as well as CANopen Network data. All CANopen objects supported by the AX030211 are user configurable using standard commercially available tools that can interact with a CANopen ®...
  • Page 15: Controller Function Blocks

      Controller Function Blocks 2.1. Input Function Blocks  The controller has altogether twelve inputs. The ten Universal Inputs can be configured to measure voltage, current, frequency, pulse width (PWM) or digital signals. The Resistive input can measure resistances in range 25Ω … 250kΩ. The Digital Input can be configured to measure digital signals.  ...
  • Page 16: Table 3 - Ai Input Range Options Depending On Sensor Type

      The allowable ranges will depend on the input sensor type selected. Table 3 shows the relationship between the sensor type, and the associated range options. The default value for each range is bolded, and object 2100h AI Range will automatically be updated with this value when 6110h is changed.
  • Page 17: Table 5 - Object 61A0H - Ai Filter Type Options

      Figure 3 – Digital Input Debouncing Frequency measurement can be changed to RPM, by setting object 2101h AI Number of Pulses per Revolution to a non-zero value. All inputs can be further filtered once the raw data has been measured. Object 61A0h AI Filter Type determines what kind of filter is used per Table 5.
  • Page 18: Table 6 - Object 2102H Ai Decimal Digits Fv Depending On Sensor Type

      The value of 2102h will depend on the AI Sensor Type and Pulses per Revolution selected and will be automatically updated per Table 7 when either 6110h or 2101h are changed. All other objects associated with the input field value also apply this object. These objects are 7120h AI Scaling 1 FV, 7122h AI Scaling 2 FV, 7148h AI Span Start, 7149h AI Span End, and 2111h AI Error Clear Hysteresis.
  • Page 19: Table 7 - Ai Object Defaults Based On Sensor Type And Input Range

      to PV as described above, but also as the minimum and maximum limits when the input is used to control another logic block. Therefore, the values in these objects are important, even when the AI Input PV object is not being used. The AI Span Start and AI Span End objects are used for fault detection, so they too are automatically updated for sensible values as the Type/Range changes.
  • Page 20: Table 8 - Ai Object Ranges Based On Sensor Type And Input Range

      Sensor Type/ 7148h 7120h 7122h 7149h 2111h Pulses per Rev Voltage: 0 to 5V and 0 to 10V Current: 0 to 20mA and 4 to 20mA 0 to 7120h 7148h to 7122h RPM: 0 to 6000RPM PWM: 0 to 100% 7148h to 7122h Current: 4 to 20mA 0 to 7120h...
  • Page 21: Resistive Input

      2.1.1. Resistive Input  The controller has one Resistive Input in the 8 pin Deutsch connector that can measure resistances and it can be also configured to measure Digital On/Off states. The Digital On/Off state reading is done using an ADC and comparing the conversion results to built-in thresholds. The preferred Digital Input voltages to the Resistive Input are 0V (low) and 5V (high).
  • Page 22: Table 10 - Object 6002H Di Polarity 8 Input Lines Options

      Discrete Input Active High Hysteresis Discrete Input Active Low Hysteresis Input Voltage Digital Hi/Lo Input Voltage (V) Digital Hi/Lo Figure 6 – Discrete Input Hysteresis Once the raw state has been evaluated, the logical state of the input is determined by object 6002h DI_Polarity_8_Input_Lines.
  • Page 23: Output Function Blocks

      Figure 7 – Analog Input Reads as Digital   2.2. Output Function Blocks  The controller has eight signal outputs, capable of producing both voltage and current signals. The available voltage modes include both positive and negative voltages. In addition to output type configuration, user can select control, enable and override sources for each output.
  • Page 24: Table 11 - Object 6310H Ao Output Type Options

      Value Meaning Output Disabled Output Voltage Output Current Table 11 – Object 6310h AO Output Type Options The allowable ranges will depend on the output type selected. Table 3 shows the relationship between the output type, and the associated range options. The default value for each range is bolded, and object 2302h AO Output Range will automatically be updated with this value when 6310h is changed.
  • Page 25: Relay Output

      Figure 9 – Analog Output Linear Scaling PV to FV The 12IN-8SOUT-CO controller allows for the PV input to be selected from the list of the logical function blocks supported by the controller. As a result, any output from one function block can be selected as the control source for another.
  • Page 26: Reference Voltages

      2.2.2. Reference Voltages  The controller has two user configurable reference voltage outputs. By default, with No Control Source or the Control Source value set to 0, the Reference Voltage is set to 10V. When a 5V reference is used, the 5120h VREF Control Source and 5121h VREF Control Number objects for the reference voltage need to have a non-zero value.
  • Page 27: Table 14 - Pid Control Response Options

      Unless both the target and feedback inputs have legitimate control sources selected, the PID loop is disabled. When active, however, the PID algorithm will be called every 7456h PID Cycle Time, the default being every 10ms. Object 6458h PID Physical Unit Timing is a read-only value and is defined in Seconds. The default value for object 6459h PID Decimal Digits Timing is 3, which means the object 7456h, along with other PID timing objects, are interpreted in milliseconds.
  • Page 28: Lookup Table Function Block

      Each system will have to be tuned for the optimum output response. Response times, overshoots and other variables will have to be decided by the customer using an appropriate PID tuning strategy. 2.4. Lookup Table Function Block  The lookup table (LTz) function blocks are not used by default. Figure 12 –...
  • Page 29: X-Axis, Input Data Response

      2.4.1. X‐Axis, Input Data Response  In the case where the “ X-Axis Type ” = ‘Data Response’, the points on the X-Axis represents the data of the control source. The constraint on the X-Axis data is that the next index value is greater than or equal to the one below it, as shown in the equation below.
  • Page 30: Figure 13 - Lookup Table Defaults With Ramp And Step Responses

      Figure 13 – Lookup Table Defaults with Ramp and Step Responses Lastly, any point except (1,1) can be selected for an ‘Ignore’ response. If LTz Point Response sub- index N is set to ignore, then all points from (X ) to (X ) will also be ignored.
  • Page 31: X-Axis, Time Response

      To summarize, Table 15 outlines the different responses that can be selected for object 30z4h, both for the X-Axis type and for each point in the table. Sub-Index Value Meaning Data Response (X-Axis Type) 2 to 11 Ignore (this point and all following it) Time Response (X-Axis Type) 2 to 11 Ramp To (this point)
  • Page 32: Programmable Logic Function Block

      2.5. Programmable Logic Function Block  The programmable logic blocks (LB(x-3)) functions are not used by default. Figure 15 – Logic Block Objects UMAX030211 Version 1.0.2. Preliminary Documentation – May be subject to change 31 - 85...
  • Page 33   This function block is obviously the most complicated of them all, but very powerful. Any LBx (where X = 4 to 5) can be linked with up to three lookup tables, any one of which would be selected only under given conditions.
  • Page 34: Figure 16 - Logic Block Flowchart

        Figure 16 – Logic Block Flowchart     UMAX030211 Version 1.0.2. Preliminary Documentation – May be subject to change 33 - 85...
  • Page 35: Conditions Evaluation

      2.5.1. Conditions Evaluation  The first step in determining which table will be selected as the active table is to first evaluate the conditions associated with a given table. Each table has associated with it up to three conditions that can be evaluated. Conditional objects are custom DEFSTRUCT objects defined as shown in Table Index Sub-Index Name...
  • Page 36: Table 18 - Lb(X-3) Condition Evaluation Results

      Value Meaning Reason False (Argument 1) Operator (Argument 2) = False True (Argument 1) Operator (Argument 2) = True Error Argument 1 or 2 output was reported as being in an error state Not Applicable Argument 1 or 2 is not available (i.e. set to ‘Control Source Not Used’) Table 18 –...
  • Page 37: Table 20 - Lb(X-3) Conditions Evaluation Based On Selected Logical Operator

      Logical Operator Select Conditions Criteria Default Table Associated table is automatically selected as soon as it is evaluated. Cnd1 And Cnd2 And Cnd3 Should be used when two or three conditions are relevant, and all must be True to select the table. If any condition equals False or Error, the table is not selected.
  • Page 38: Logic Block Output

      2.5.3. Logic Block Output  Recall that Table Y, where Y = A, B or C in the LB(x-3) function block does NOT mean lookup table 1 to 3. Each table has object 3x01h LB(x-3) Lookup Table Number which allows the user to select which lookup tables they want associated with a particular logic block.
  • Page 39: Math Function Block

      2.6. Math Function Block    There are two mathematic function blocks that allow the user to define basic algorithms. Math function block Z = 1 to 2 will be enabled based on sub-index Z in object 4000h Math Enable . Figure 17 – Math Function Block Objects A math function block can take up to four input signals, as listed in Table 23.
  • Page 40: Table 22 - Object 4Y50H Math Function Operators

      True when InA Equals InB True when InA Not Equal InB > True when InA Greater Than InB >= True when InA Greater Than or Equal InB < True when InA Less Than InB True when InA Less Than or Equal InB <= True when InA or InB is True True when InA and InB are True...
  • Page 41: Miscellaneous Function Block

      2.7. Miscellaneous Function Block  There are some other objects available which have not yet been discussed or mentioned briefly in passing (i.e. constants.) These objects are not necessarily associated with one another but are all discussed here. Figure 18 – Miscellaneous Objects Extra RPDO Messages Objects 2500h Extra Control Received PV , 2502h EC Decimal Digits PV , 2502h EC Scaling 1 PV and EC Scaling 2 PV allow for additional data received on a CANopen ®...
  • Page 42   Constant Values Object 5010h Constant Field Value is provided to give the user the option for a fixed value that can be used by other function blocks. Sub-index 1 is fixed as FALSE (0) and sub-index 2 is always TRUE (1).
  • Page 43: Available Control Sources

    In case Parameter is set to ‘0’, the measured value is used as is. 13: CAN Reception Timeout Only available in J1939 version, AX030210 14: Control Variable Data 1 to 3 Signal Outputs’ DAC status. Number 3 reads 15: DAC Status ‘0’...
  • Page 44: Diagnostics

        Control Source Scaling 1 Scaling 2 Dec Digits CANopen Message – Num 1 to 9 7320h 7322h 6302h CANopen Message – Num 10 to 19 2520h 2522h 2502h Constant Function Block N/A (float) PID Control Function Block 100% 1 (fixed) Lookup Table z Function Block 0 or lowest...
  • Page 45: Installation Instructions

      3. Installation Instructions  3.1. Dimensions and Pinout  Figure 19 – AX030211 Dimensional Drawing PIN# Description PIN# Description UNIVERSAL INPUT 1_GND UNIVERSAL INPUT 2_GND UNIVERSAL INPUT 3_GND UNIVERSAL INPUT 4_GND UNIVERSAL INPUT 5_GND UNIVERSAL INPUT 6_GND UNIVERSAL INPUT 7_GND UNIVERSAL INPUT 8_GND UNIVERSAL SIGNAL +V Reference 2 INPUT 9 RESISTIVE INPUT_GND...
  • Page 46: Canopen Interface And Object Dictionary

      4. CANopen INTERFACE AND OBJECT DICTIONARY  The CANopen ® object dictionary of the AX030211 Controller is based on CiA device profile DS-404 V4.1.0 (xxx device profile). The object dictionary includes Communication Objects beyond the minimum requirements in the profile, as well as several manufacturer-specific objects for extended functionality.
  • Page 47: Setting Baud Rate

       The module will send the following response (any other response is a failure). Item Value COB-ID 0x7E4 Length Data 0 0x11 (cs=17 for configure node-id) Data 1 0x00 Data 2 0x00  Save the configuration by sending the following message: Item Value COB-ID...
  • Page 48: Table 27 - Lss Baud Rate Indices

      Index Bit Rate 1 Mbit/s 800 kbit/s 500 kbit/s 250 kbit/s 125 kbit/s (default) reserved (100 kbit/s) 50 kbit/s 20 kbit/s 10 kbit/s Table 27 – LSS Baud rate Indices  The module will send the following response (any other response is a failure): Item Value COB-ID...
  • Page 49    Set the module state to LSS-operation by sending the following message: (Note, the module will reset itself back to the pre-operational state) Item Value COB-ID 0x7E5 Length Data 0 0x04 (cs=4 for switch state global) Data 1 0x00 (switches to waiting state) The following screen capture (left) shows the CAN data was sent (7E5h) and received (7E4h) by the tool when the baud rate was changed to 250 kbps using the LSS protocol.
  • Page 50: Communication Objects (Ds-301)

      4.2. Communication Objects (DS‐301)  Index Object Object Type Data Type Access (hex) Mapping 1000 Device Type UNSIGNED32 1001 Error Register UNSIGNED8 1002 Manufacturer Status Register UNSIGNED32 1003 Pre-Defined Error Field ARRAY UNSIGNED32 1010 Store Parameters ARRAY UNSIGNED32 1011 Restore Default Parameters ARRAY UNSIGNED32 1016...
  • Page 51: 1000H Device Type

      4.2.1. 1000h Device Type  Index Subindex Data Access Value Default Description Type Mapping Range Value 1000 UINT32 0x192 0x192 DS-402   4.2.2. 1001h Error Register  Index Subindex Data Access Value Default Description Type Mapping Range Value 1001 UINT8 0, 1 Error register   4.2.3.
  • Page 52: 1011H Restore Parameters

    Subindex Data Access Value Default Description Type Mapping Range Value 1018 UINT8 Number of subindexes UINT32 UINT32 0x55 Vendor ID (Axiomatic Technologies) 0xAA100261 Product Code Revision Number Serial Number   4.2.10. 1020h Verify Configuration  Index Subindex Data Access Value Default Description Type...
  • Page 53: 1029H Error Behavior

      4.2.11. 1029h Error Behavior  Index Subindex Data Access Value Default Description Type Mapping Range Value 1029 UINT8 Number of subindexes State transition on Comm. fault (no change) State transition on DI fault State transition on AI fault State transition on DO fault State transition on AO fault State transition on other faults  ...
  • Page 54: 1600H Rpdo 1 Mapping Parameters

        4.2.16. 1600h RPDO 1 Mapping Parameters  Index Subindex Data Access Value Default Description Type Mapping Range Value 1600 UINT8 Number of subindexes UINT32 UINT32 0x607E0008 Polarity 0x60FF0020 Target velocity Not used by default Not used by default   4.2.17. 1601h RPDO 2 Mapping Parameters  Index Subindex Data Access Value...
  • Page 55: 1801H Tpdo 2 Communication Parameters

      4.2.21. 1801h TPDO 2 Communication Parameters  Index Subindex Data Access Value Default Description Type Mapping Range Value 1801 UINT8 Number of subindexes UINT32 UINT32 0x400002FF COB-ID UINT8 UINT8 0xFE Transmission type UINT16 UINT16 Inhibit time UINT8 UINT8 Compatibility entry UINT16 UINT16 0x64 Event timer  ...
  • Page 56: 1A02H Tpdo 3 Mapping Parameters

      4.2.26. 1A02h TPDO 3 Mapping Parameters  Index Subindex Data Access Value Default Description Type Mapping Range Value 1A02 UINT8 Number of subindexes UINT32 UINT32 0x50200020 Processor Temperature Field Value 0x50300020 Power Supply Field Value Not used by default Not used by default   4.2.27.
  • Page 57: Application Objects

      4.3. Application Objects    Index Object Object Data Type Access (hex) Type Mapping 6000 DI Read State 8 Input Lines UNSIGNED8 6002 DI Polarity 8 Input Lines UNSIGNED8 6110 AI Sensor Type ARRAY UNSIGNED16 6112 AI Operating Mode ARRAY UNSIGNED8 6132 AI Decimal Digits PV ARRAY UNSIGNED8...
  • Page 58: 6000H Di Read State 8 Input Lines

      4.3.1. 6000h DI Read State 8 Input Lines  Index Subindex Data Access Value Default Description Type Mapping Range Value 6000 UINT8 Number of subindexes 0-0xFF Digital Input #1…#8 state bitmap, one bit per input 0-0x0F Digital Input #9…#12 state bitmap, one bit per input 4.3.2. 6002h DI Polarity 8 Input Lines  Index Subindex Data...
  • Page 59: 61A0H Ai Filter Type

      4.3.6. 61A0h AI Filter Type  Index Subindex Data Access Value Default Description Type Mapping Range Value 61A0 UINT8 Number of subindexes 1…12 Input #1 … #12 software filter type 4.3.7. 61A1h AI Filter Constant  Index Subindex Data Access Value Default Description Type Mapping Range Value 61A1 UINT8 Number of subindexes...
  • Page 60: 6459H Pid Decimal Digits Timing

      4.3.3. 6459h PID Decimal Digits Timing  Index Subindex Data Access Value Default Description Type Mapping Range Value 6459 UINT8 Number of subindexes 1…2 Additional PID controller decimal digits timing   4.3.4. 7100h AI Input Field Value  Index Subindex Data Access Value Default Description Type Mapping Range Value 7100 UINT8 Number of subindexes...
  • Page 61: 7148H Ai Input Span Start

      4.3.10. 7148h AI Input Span Start  Index Subindex Data Access Value Default Description Type Mapping Range Value 7148 UINT8 Number of subindexes 1…12 INT16 Input type Input #1 … #12 span start dependent 4.3.11. 7149h AI Input Span End  Index Subindex Data Access Value Default Description Type Mapping Range Value...
  • Page 62: 7323H Ao Output Scaling 2 Fv

      4.3.16. 7323h AO Output Scaling 2 FV  Index Subindex Data Access Value Default Description Type Mapping Range Value 7323 UINT8 Number of subindexes 1…9 INT16 INT16 Output #1 … #9 field value scaler 2 4.3.17. 7330h AO Output Field Value  Index Subindex Data Access Value Default Description Type Mapping Range Value...
  • Page 63: Manufacturer Objects

      4.4. Manufacturer Objects  Index Object Object Data Type Access (hex) Type Mapping 2020 DI Pull Up Down Mode 1 Input Line ARRAY UNSIGNED8 2100 AI Input Range ARRAY UNSIGNED8 2101 AI Pulses Per Revolution ARRAY UNSIGNED8 2102 AI Decimal Digits FV ARRAY UNSIGNED8 2103...
  • Page 64   3x01 LB(x-3) Lookup Table Number ARRAY UNSIGNED8 3x02 LB(x-3) Function Logical Operator ARRAY UNSIGNED8 3x11 LB(x-3) Function A Condition 1 RECORD UNSIGNED8 3x12 LB(x-3) Function A Condition 2 RECORD UNSIGNED8 3x13 LB(x-3) Function A Condition 3 RECORD UNSIGNED8 3x21 LB(x-3) Function B Condition 1 RECORD UNSIGNED8 3x22...
  • Page 65: 2020H Di Pull Up Down Mode 1 Input Line

      4.4.1. 2020h DI Pull Up Down Mode 1 Input Line  Index Subindex Data Access Value Default Description Type Mapping Range Value 2020 UINT8 Number of subindexes 0–no pull Input #1…#12 pull up / down selection 1 – PU 2 – PD   4.4.2. 2100h AI Input Range  Index Subindex Data Access Value Default...
  • Page 66: 2111H Ai Error Clear Hysteresis

      4.4.7. 2111h AI Error Clear Hysteresis  Index Subindex Data Access Value Default Description Type Mapping Range Value 2111 UINT8 Number of subindexes 1…12 INT16 0-32767 Input #1…#12 error clear hysteresis 4.4.8. 2112h AI Error Reaction Delay  Index Subindex Data Access Value Default Description Type Mapping Range Value 2112 UINT8 Number of subindexes...
  • Page 67: 2341H Ao Control Input Number

      4.4.13. 2341h AO Control Input Number  Index Subindex Data Access Value Default Description Type Mapping Range Value 2341 UINT8 Number of subindexes 1…9 depends Output #1…#9 control number, see Table 23 for on Control details. Source   4.4.14. 2350h AO Enable Input Source  Index Subindex Data Access Value Default Description...
  • Page 68: 2360H Ao Override Input Source

      4.4.18. 2360h AO Override Input Source  Index Subindex Data Access Value Default Description Type Mapping Range Value 2360 UINT8 Number of subindexes 1…9 0-15 Output #1…#9 override source, see Table 23 for details.   4.4.19. 2361h AO Override Input Number  Index Subindex Data Access Value Default Description Type Mapping Range...
  • Page 69: 2453H Pid Target Source

      4.4.24. 2453h PID Target Source  Index Subindex Data Access Value Default Description Type Mapping Range Value 2453 UINT8 Number of subindexes 1…2 0-10 By default disabled. See Table 23 4.4.25. 2454h PID Target Number  Index Subindex Data Access Value Default Description Type Mapping Range Value 2454 UINT8 Number of subindexes...
  • Page 70: 2502H Ec Decimal Digits Pv

      4.4.31. 2502h EC Decimal Digits PV  Index Subindex Data Access Value Default Description Type Mapping Range Value 2502 UINT8 Number of subindexes 1…9 Extra received PV #1 … #9 decimal digits 4.4.32. 2520h EC Scaling 1 PV  Index Subindex Data Access Value Default Description Type Mapping Range Value 2520 UINT8...
  • Page 71: 30Z3H Lt0Z X Axis Decimal Digits

      4.4.37. 30z3h LT0z X Axis Decimal Digits  Index Subindex Data Access Value Default Description Type Mapping Range Value 30z3 UINT8 Number of subindexes LUT #z x-axis decimal digits   4.4.38. 30z4h LT0z Y Axis Decimal Digits  Index Subindex Data Access Value Default Description Type Mapping Range Value 30z4 UINT8 Number of subindexes LUT #z y-axis decimal digits  ...
  • Page 72: 3300H Logic Block Enable

      4.4.43. 3300h Logic Block Enable  Index Subindex Data Access Value Default Description Type Mapping Range Value 3300 UINT8 Number of subindexes 1…2 0, 1 Logic block #1 … #2 enable   4.4.44. 3310h Logic Block Selected Table  Index Subindex Data Access Value Default Description Type Mapping Range Value 3310...
  • Page 73: 3X12H Logic Block (X-3) Function A Condition 2

      4.4.49. 3x12h Logic Block (x‐3) Function A Condition 2  Index Subindex Data Access Value Default Description Type Mapping Range Value 3x12 UINT8 Number of subindexes Table LB(x-3) Function A Condition 2 Arg 1 Source LB(x-3) Function A Condition 2 Arg 1 Number Table LB(x-3) Function A Condition 2 Arg 2 Source LB(x-3) Function A Condition 2 Arg 2 Number Table LB(x-3) Function A Condition 2 Operator...
  • Page 74: 3X23H Logic Block (X-3) Function B Condition 3

      4.4.53. 3x23h Logic Block (x‐3) Function B Condition 3  Index Subindex Data Access Value Default Description Type Mapping Range Value 3x23 UINT8 Number of subindexes Table LB(x-3) Function B Condition 3 Arg 1 Source LB(x-3) Function B Condition 3 Arg 1 Number Table LB(x-3) Function B Condition 3 Arg 2 Source LB(x-3) Function B Condition 3 Arg 2 Number Table LB(x-3) Function B Condition 3 Operator...
  • Page 75: 4000H Math Function Enable

      4.4.57. 4000h Math Function Enable  Index Subindex Data Access Value Default Description Type Mapping Range Value 4000 UINT8 Number of subindexes 1…2 0, 1 Math block #1 … #2 enable 4.4.58. 4021h Math Function Output Scaling 1 PV  Index Subindex Data Access Value Default Description Type Mapping Range Value 4021 UINT8...
  • Page 76: 4Y03H Math #Y Input Decimal Digits Fv

      4.4.64. 4y03h Math #y Input Decimal Digits FV  Index Subindex Data Access Value Default Description Type Mapping Range Value 4y03 UINT8 Number of subindexes 1…5 Math block #y input field value decimal digits 4.4.65. 4y20h Math #y Input Scaling 1 FV  Index Subindex Data Access Value Default Description Type Mapping Range Value 4y20 UINT8...
  • Page 77: 5020H Power Supply Fv

      4.4.70. 5020h Power Supply FV  Index Subindex Data Access Value Default Description Type Mapping Range Value 5020 FLOAT32 FLOAT32 Measured power supply voltage   4.4.71. 5030h CPU Temperature FV  Index Subindex Data Access Value Default Description Type Mapping Range Value 5030 FLOAT32 FLOAT32 Measured CPU internal temperature  ...
  • Page 78: 5051H Fd Error Response Delay

      4.4.76. 5051h FD Error Response Delay  Index Subindex Data Access Value Default Description Type Mapping Range Value 5051 UINT8 Number of subindexes INT16 0-600 FD Error response delay 1 (Temperature) FD Error response delay 2 (VPS) FD Error response delay 3   4.4.77. 5120h VREF Control Source ...
  • Page 79: Firmware Reflashing Instructions

      5. Firmware Reflashing Instructions                         WARNING! The firmware reflashing can be carried out only using Axiomatic                                           Technologies Electronic Assistant kit AX070502 and                                           250k CAN baud rate.  DO NOT  START THE BOOTLOADER WITHOUT THE KIT!                                        The Electronic Assistant compatible J1939 bootloader can be started by writing ‘1’ to subindex 0 of the object 55AAh: 1. To do so, the object 55AAh can be accessed using CANopen tools or by sending the following SDO write message using CAN Assistant –...
  • Page 80   3. Select the F lashing button and navigate to where you had saved the AF-19135-x.xx.bin (or equivalent) file sent from Axiomatic. (Note: only binary (.bin) files can be flashed using the EA tool.) 4. Once the Flash Application Firmware window opens, you can enter comments such as “Firmware upgraded by [Name]”...
  • Page 81   NOTE: It is good practice to tick the “Erase All ECU Flash Memory” box. Please note, that selecting this option will erase ALL data stored in non-volatile flash . It will also erase any configuration of the setpoints that might have been done to the ECU and reset all setpoints to their factory defaults.
  • Page 82   Note: If at any time during the upload the process is interrupted, the data is corrupted (bad checksum) or for any other reason the new firmware is not correct, i.e. bootloader detects that the file loaded was not designed to run on the hardware platform, the bad or corrupted application will not run.
  • Page 83: Appendix A - Technical Specification

    Input power switches must be arranged external to the Axiomatic Control Module. Power input wiring should be limited to 10 meters.
  • Page 84   Table 38.0 Description of Inputs to AX030210 Input Type Description Analog Inputs Up to 10 analog inputs are available. 0…5VDC or 0…10VDC 4…20mA or 0…20mA Digital Inputs Up to 10 digital inputs are available. The input accepted is active high or active low.
  • Page 85 Digital isolation is provided for the CAN line. Isolation 300Vrms Isolation for the CAN port User Interface EDS file Reflashing Axiomatic Electronic Assistant, AX070502 Operating Conditions -40 to 85C (-40 to 185F) Protection IP67, Unit is conformally coated in the housing. Marine Type Approval Testing to IP56.
  • Page 86 The chassis ground stud located on the mounting foot must be tied directly to Earth Ground. Network Construction Axiomatic recommends that multi-drop networks be constructed using a “daisy chain” or “backbone” configuration with short drop lines. Termination It is necessary to terminate the network with external termination resistors.

Table of Contents