Supplementary Material - Roland FP-7F Implementation Manual

Digital piano
Hide thumbs Also See for FP-7F:
Table of Contents

Advertisement

4. Supplementary material

●Decimal and Hexadecimal table
In MIDI documentation, data values and addresses/sizes of exclusive
messages etc. are expressed as hexadecimal values for each 7 bits.
The following table shows how these correspond to decimal numbers.
Dec.
Hex.
Dec.
Hex.
0
00H
32
20H
1
01H
33
21H
22H
2
02H
34
3
03H
35
23H
4
04H
36
24H
5
05H
37
25H
6
06H
38
26H
7
07H
39
27H
8
08H
40
28H
09H
41
29H
9
10
0AH
42
2AH
11
0BH
43
2BH
12
0CH
44
2CH
13
0DH
45
2DH
14
0EH
46
2EH
15
0FH
47
2FH
10H
48
30H
16
31H
17
11H
49
18
12H
50
32H
19
13H
51
33H
20
14H
52
34H
21
15H
53
35H
22
16H
54
36H
23
17H
55
37H
18H
56
38H
24
25
19H
57
39H
26
1AH
58
3AH
27
1BH
59
3BH
28
1CH
60
3CH
29
1DH
61
3DH
30
1EH
62
3EH
1FH
63
3FH
31
* Decimal values such as MIDI channel, bank select, and program change are
listed as one (1) greater than the values given in the above table.
* A 7-bit byte can express data in the range of 128 steps. For data where
greater precision is required, we must use two or more bytes. For example, two
hexadecimal numbers aa bbH expressing two 7-bit bytes would indicate a
value of aa x 128 + bb.
* In the case of values which have a ± sign, 00H = -64, 40H = ±0, and 7FH =
+63, so that the decimal expression would be 64 less than the value given in
the above chart. In the case of two types, 00 00H = -8192, 40 00H = ±0, and 7F
7FH = +8191. For example if aa bbH were expressed as decimal, this would be
aa bbH - 40 00H = aa x 128 + bb - 64 x 128.
* Data marked "nibbled" is expressed in hexadecimal in 4-bit units. A value
expressed as a 2-byte nibble 0a 0bH has the value of a x 16 + b.
<Example1> What is the decimal expression of 5AH?
From the preceding table, 5AH = 90
<Example2> What is the decimal expression of the value 12 34H given as
hexadecimal for each 7 bits?
From the preceding table, since 12H = 18 and 34H = 52
18 x 128 + 52 = 2356
<Example3> What is the decimal expression of the nibbled value 0A 03 09 0D?
From the preceding table, since 0AH = 10, 03H = 3, 09H = 9, 0DH = 13
((10 x 16 + 3) x 16 + 9) x 16 + 13 = 41885
<Example4> What is the nibbled expression of the decimal value 1258?
16) 1258
16)
78... 10
Dec.
Hex.
Dec
Hex.
64
40H
96
60H
65
41H
97
61H
66
42H
98
62H
67
43H
99
63H
68
44H
100
64H
69
45H
101
65H
70
46H
102
66H
71
47H
103
67H
72
48H
104
68H
73
49H
105
69H
74
4AH
106
6AH
107
75
4BH
6BH
76
4CH
108
6CH
77
4DH
109
6DH
78
4EH
110
6EH
79
4FH
111
6FH
80
50H
70H
112
81
51H
113
71H
82
52H
114
72H
83
53H
115
73H
84
54H
116
74H
85
55H
117
75H
86
56H
118
76H
87
57H
77H
119
88
58H
120
78H
89
59H
121
79H
90
5AH
122
7AH
91
5BH
123
7BH
92
5CH
124
7CH
93
5DH
125
7DH
94
5EH
126
7EH
95
5FH
7FH
127
4... 14
16)
0... 4
Since from the preceding table, 0 = 00H, 4 = 04H, 14 = 0EH, 10 = 0AH, the
answer is 00 04 0E 0AH.
●Examples of actual MIDI messages
<Example1> 92 3E 5F
9n is the Note-on status, and n is the MIDI channel number. Since 2H = 2, 3EH
= 62, and 5FH = 95, this is a Note-on message with MIDI CH = 3, note number
62 (note name is D4), and velocity 95.
<Example2> CE 49
CnH is the Program Change status, and n is the MIDI channel number. Since
EH = 14 and 49H = 73, this is a Program Change message with MIDI CH = 15,
program number 74 (Flute in GS).
<Example3> EA 00 28
EnH is the Pitch Bend Change status, and n is the MIDI channel number. The
2nd byte (00H = 0) is the LSB and the 3rd byte (28H = 40) is the MSB, but Pitch
Bend Value is a signed number in which 40 00H (= 64 x 128 + 0 = 8192) is 0, so
this Pitch Bend Value is 28 00H - 40 00H = 40 x 128 + 0 - (64 x 128 + 0) = 5120
- 8192 = -3072
If the Pitch Bend Sensitivity is set to 2 semitones, -8192 (00 00H) will cause the
pitch to change 200 cents, so in this case -200 x (-3072) / (-8192) = -75 cents of
Pitch Bend is being applied to MIDI channel 11.
<Example4> B3 64 00 65 00 06 0C 26 00 64 7F 65 7F
BnH is the Control Change status, and n is the MIDI channel number. For
Control Changes, the 2nd byte is the control number, and the 3rd byte is the
value. In a case in which two or more messages consecutive messages have
the same status, MIDI has a provision called "running status" which allows the
status byte of the second and following messages to be omitted. Thus, the
above messages have the following meaning.
B3
64 00
MIDI ch.4, lower byte of RPN parameter number: 00H
(B3)
65 00
(MIDI ch.4) upper byte of RPN parameter number: 00H
(B3)
06 0C
(MIDI ch.4) upper byte of parameter value: 0CH
(B3)
26 00
(MIDI ch.4) lower byte of parameter value: 00H
(B3)
64 7F
(MIDI ch.4) lower byte of RPN parameter number: 7FH
(B3)
65 7F
(MIDI ch.4) upper byte of RPN parameter number: 7FH
In other words, the above messages specify a value of 0C 00H for RPN
parameter number 00 00H on MIDI channel 4, and then set the RPN parameter
number to 7F 7FH.
RPN parameter number 00 00H is Pitch Bend Sensitivity, and the MSB of the
value indicates semitone units, so a value of 0CH = 12 sets the maximum pitch
bend range to +/- 12 semitones (1 octave). (On GS sound sources the LSB of
Pitch Bend Sensitivity is ignored, but the LSB should be transmitted anyway
(with a value of 0) so that operation will be correct on any device.)
Once the parameter number has been specified for RPN or NRPN, all Data
Entry messages transmitted on that same channel will be valid, so after the
desired value has been transmitted, it is a good idea to set the parameter
number to 7F 7FH to prevent accidents. This is the reason for the (B3) 64 7F
(B3) 65 7F at the end.
It is not desirable for performance data (such as Standard MIDI File data) to
contain many events with running status as given in <Example 4>. This is
because if playback is halted during the song and then rewound or
fast-forwarded, the sequencer may not be able to transmit the correct status,
and the sound source will then misinterpret the data. Take care to give each
event its own status.
It is also necessary that the RPN or NRPN parameter number setting and the
value setting be done in the proper order. On some sequencers, events
occurring in the same (or consecutive) clock may be transmitted in an order
different than the order in which they were received. For this reason it is a good
idea to slightly skew the time of each event (about 1 tick for TPQN = 96, and
about 5 ticks for TPQN = 480).
* TPQN: Ticks Per Quarter Note
16

Advertisement

Table of Contents
loading

Table of Contents