Sign In
Upload
Manuals
Brands
Schweitzer Engineering Laboratories Manuals
Relays
SEL-700G1
Schweitzer Engineering Laboratories SEL-700G1 Manuals
Manuals and User Guides for Schweitzer Engineering Laboratories SEL-700G1. We have
1
Schweitzer Engineering Laboratories SEL-700G1 manual available for free PDF download: Instruction Manual
Schweitzer Engineering Laboratories SEL-700G1 Instruction Manual (824 pages)
Generator and Intertie Protection Relays
Brand:
Schweitzer Engineering Laboratories
| Category:
Relays
| Size: 15 MB
Table of Contents
Table of Contents
3
List of Tables
7
List of Figures
15
Preface
23
Manual Overview
23
Safety Information
24
Conventions
28
Section 1: Introduction and Specifications
33
Overview
33
Features
33
Table 1.1 Current (ACI) and Voltage (AVI) Card Selection for SEL-700G Models
34
Table 1.2 Protection Elements in SEL-700G Models
34
Table 1.3 Recommended Protection Elements by Generator Grounding Method
36
Models, Options, and Accessories
37
Applications
39
Getting Started
40
Figure 1.1 Typical Current Connections
40
Table 1.4 SEL-700G Serial Port Settings
41
Figure 1.2 Response Header
41
Figure 1.3 STA Command Response-No Communications Card or EIA-232/EIA-485 Communications Card
42
Figure 1.4 STA Command Response-Communications Card/Devicenet Protocol
42
Specifications
44
Section 2: Installation
53
Overview
53
Relay Placement
53
I/O Configuration
54
Figure 2.1 Relay Panel-Mount Dimensions
54
Figure 2.2 Slot Allocations for Different Cards
55
Table 2.1 Power Supply Inputs (PSIO/2 DI/3 DO) Card Terminal Designations
56
Table 2.2 Communications Ports
56
Table 2.3 Communications Card Interfaces and Connectors
57
Table 2.4 Current/Voltage Inputs (3 ACI/4 AVI) Card Terminal Designations
58
Table 2.5 Current/Voltage Inputs (3 ACI/2 AVI) Card Terminal Designations
59
Table 2.6 Currents Inputs (3 ACIE) Card Terminal Designations
59
Table 2.7 Voltage Inputs (2 AVI) Card Terminal Designations
60
Table 2.8 Current/Voltage Inputs (4 ACI/3 AVI) Card Terminal Designations
60
Table 2.9 Current Inputs (3 ACIZ) Card Terminal Designations
61
Table 2.10 Current Input (1 ACI) Card Terminal Designation
61
Table 2.11 Four Analog Inputs/Four Analog Outputs (4 AI/4 AO) Card Terminal Designations
62
Table 2.12 I/O (3 DI/4 DO/1 AO) Card Terminal Designations
62
Table 2.13 RTD (10 RTD) Card Terminal Designations
63
Table 2.14 Four Digital Inputs/Four Digital Outputs (4 DI/4 DO) Card Terminal Designations
63
Table 2.15 Eight Digital Inputs (8 DI) Card Terminal Designations
64
Table 2.16 Eight Digital Outputs (8 DO) Card Terminal Designations
64
Table 2.17 Four Digital Inputs, One Form B Digital Output, Two Form C Digital Outputs (4 DI/3 DO) Card Terminal Designations
65
Figure 2.3 Circuit Board of Analog I/O Board, Showing Jumper Selection
68
Figure 2.4 JMP1 through JMP4 Locations on 4 AI/4 AO Board
69
Figure 2.5 Current Output Jumpers
69
Figure 2.6 Voltage Output Jumpers
69
Table 2.18 Jumper Functions and Default Positions
70
Rear-Panel Connections
71
Figure 2.8 SEL-700G1+ with Dual-Fiber Ethernet, Fast Hybrid 4 DI/4 DO, 10 Rtds, 3 ACI/2 AVI, 4 ACI/3 AVI (MOT 0700G11ACA9X76850830)
71
Figure 2.9 SEL-700GT+ with Dual Copper Ethernet, 4 DI/4 DO, 8 DO, 3 ACI/4 AVI, 4 ACI/3 AVI (MOT 0700GT1A2X75850630)
71
Figure 2.10 SEL-700GW with Copper Ethernet, 4 DI/4 DO, 4 AI/4 AO, 3 ACIE, 3 ACIZ
72
Figure 2.11 Control I/O Connections-4 AI/4 AO Option in Slot D
73
Table 2.19 Typical Maximum RTD Lead Length
74
Figure 2.12 Control I/O Connections-Internal RTD Option
74
AC/DC Control Connection Diagrams
75
Figure 2.13 Analog Output Wiring Example
75
Figure 2.14 Output OUT103 Relay Output Contact Configuration
75
Figure 2.15 OUT103 Contact Fail-Safe and Nonfail-Safe Options
76
Figure 2.16 Voltage Connections
77
AC/DC Connections and Applications
78
Figure 2.17 SEL-700G0 Relay AC Connection Example-High-Impedance Grounded Generator Without Current Differential Protection
78
Figure 2.18 SEL-700G0 Relay AC Connection Example-Solidly Grounded Generator with Ground Differential Protection (87N)
78
Figure 2.19 SEL-700G0+ Relay High-Impedance Grounded Generator with Synchronism Check and Without Current Differential Protection
79
Figure 2.20 SEL-700G1+ Relay AC Connection Example-High-Impedance Grounded Generator with Step-Up Transformer Included in Differential Zone (with Synchronism Check and 100% Stator Ground Protection)
79
Figure 2.21 SEL-700G1+ Relay AC Connection Example-High-Impedance Grounded Generator with Split-Phase Current Differential Protection
80
Figure 2.22 SEL-700G1+ Relay High-Impedance Grounded Generator with Split-Phase, Self-Balancing Differential Protection
80
SEL-700G1+ Generator Relay Application Example
81
Figure 2.23 SEL-700G1+ Relay Typical AC Current and Four-Wire Wye Voltage Connection with MOT SEL-0700G11A2XBA76850231
81
Figure 2.24 SEL-700G1+ Typical DC External Connections
82
SEL-700G1+ Generator Relay Application Example 2
83
Figure 2.25 SEL-700G1+ Relay AC Connection Example, Multiple High-Impedance Grounded Generators Connected to a Common Bus, with 67N and Other Protection
84
SEL-700GT+ Intertie Relay Application
85
Figure 2.26 SEL-700GT+ Relay Typical AC Current and Four-Wire Wye Voltage Connection
85
Figure 2.27 SEL-700GT+ Typical DC External Connections
86
SEL-700GW Wind Generator Relay Application
87
Figure 2.28 SEL-700GW Dual Feeder AC Current Connections
87
Figure 2.29 SEL-700GW Typical DC External Connections
87
Thermal Protection of Generator and Prime Mover
88
Field Ground Protection of Generator
88
Figure 2.30 Generator Thermal Protection with an SEL-2600 RTD Module and an SEL-700G
88
Field Serviceability
89
Figure 2.31 Field Ground Protection with an SEL-700G Relay
89
Section 3: PC Software
91
Overview
91
Table 3.1 SEL Software Solutions
91
Setup
92
Table 3.2 AC SEL ERATOR Quickset SEL-5030 Software
92
Figure 3.1 Serial Port Communication Dialog Box
92
Terminal
93
Figure 3.2 Serial Port Communication Parameters Dialog Box
93
Figure 3.3 Network Communication Parameters Dialog Box
93
Figure 3.4 Communications Menu
93
Figure 3.5 Device Response to the ID Command
94
Settings Database Management and Drivers
95
Settings
96
Table 3.3 File/Tools Menus
97
Figure 3.6 Selection of Drivers
97
Figure 3.7 Update Part Number
97
Figure 3.8 New Setting Screen
98
Figure 3.9 Expressions Created with Expression Builder
99
Event Analysis
100
Figure 3.10 Composite Screens for Retrieving Events
100
Figure 3.11 Generator Synchronism Report
101
Meter and Control
102
Figure 3.12 Saving the Retrieved Event
102
Figure 3.13 Device Overview Screen
103
Figure 3.14 Control Screen
104
Figure 3.15 Remote Operation Selection
104
AC SEL ERATOR Quickset Help
105
Table 3.4 Quickset Help
105
Figure 3.16 Synchroscope
105
Section 4: Protection and Logic Functions Overview
108
Application Data
109
Group Settings (SET Command)
109
Table 4.1 Identifier Settings
109
Table 4.2 Configuration Settings
110
Figure 4.1 Phase Rotation Setting
111
Figure 4.2 Percentage Restraint Differential Characteristic
113
Figure 4.3 Winding X Compensated Currents
114
Figure 4.4 Differential Element (87-1) Quantities
114
Figure 4.5 Differential Element Logic
116
Figure 4.6 Differential Element Harmonic Blocking Logic
116
Table 4.3 Differential Element Settings
118
Figure 4.7 Differential Element Output Logic
118
Figure 4.8 Differential Current Alarm Logic Diagram
119
Figure 4.9 Delta Irtn and Delta Iopn External Event Detector Logic
121
Figure 4.10 Second-Harmonic External Event Detector Logic
122
Figure 4.11 High Security Mode RESET Logic
122
Figure 4.12 AO87P2 Logic
123
Figure 4.13 Winding Connections, Phase Shifts, and Compensation Direction
127
Figure 4.14 Example 1 for Wnctc Selection
129
Figure 4.15 Effect of X_CUR_IN Setting on Residual Current (IG)
138
Table 4.4 Ground Differential Settings
139
Figure 4.16 87N Element Logic Diagram
139
Figure 4.17 REF Enable Logic
141
Figure 4.18 REF Directional Element
141
Table 4.5 Restricted Earth Fault Settings
142
Figure 4.19 REF Protection Output (Extremely Inverse-Time O/C)
142
Figure 4.20 Effect of X_CUR_IN Setting on Polarizing Current
143
Figure 4.21 64G Element Operating Characteristic
145
Table 4.6 Stator Ground Protection Settings
146
Figure 4.22 64G Logic Diagram
151
Figure 4.23 Field Ground Protection (64F) Elements Logic
152
Table 4.7 Field Ground Protection Settings
153
Table 4.8 Compensator Distance Protection Settings
154
Figure 4.24 Three-Phase Distance Element Operating Characteristics
156
Figure 4.25 Phase-To-Phase Distance Element Operating Characteristics
156
Figure 4.26 Zone 1 Compensator Element Logic
157
Figure 4.27 Compensator Distance Element Logic
157
Table 4.9 Voltage Controlled/Restraint Time OC Protection Settings
158
Figure 4.28 Voltage-Controlled Phase Time-Overcurrent Element 51CT
161
Figure 4.29 Voltage-Restrained Phase Time-Overcurrent Element 51VT
161
Figure 4.30 51V Element Voltage Restraint Characteristic
162
Table 4.10 Loss-Of-Field Protection Settings
163
Figure 4.31 Loss-Of-Field Logic Diagram
163
Figure 4.32 Loss-Of-Field Element Operating Characteristic, Negative Zone 2 Offset
166
Table 4.11 Current Unbalance Settings
167
Figure 4.33 Loss-Of-Field Element Operating Characteristic, Positive Zone 2 Offset
167
Figure 4.34 Negative-Sequence Overcurrent Element Logic Diagram
169
Figure 4.35 Negative-Sequence Time-Overcurrent Operating Characteristic
170
Table 4.12 Thermal Overload Settings
171
Figure 4.36 Simplified Thermal Model, Generator
171
Figure 4.37 Generator Overload Curve
172
Figure 4.38 Volts/Hertz Element Logic
173
Figure 4.39 Dual-Level Volts/Hertz Time-Delay Characteristic 24CCS = DD
174
Figure 4.40 Composite Inverse/Definite-Time Overexcitation Characteristic, 24CCS = ID
174
Table 4.13 Volts-Per-Hertz Settings
175
Figure 4.42 Volts/Hertz Inverse-Time Characteristic, 24IC
177
Figure 4.43 Volts/Hertz Inverse-Time Characteristic, 24IC
178
Table 4.14 Frequency Accumulation Settings
180
Figure 4.44 Example Turbine Operating Limitations During Abnormal Frequency
181
Figure 4.45 Abnormal Frequency Protection Logic Diagram
182
Table 4.15 Out-Of-Step Protection Settings
183
Figure 4.46 Single-Blinder Scheme Operating Characteristics
184
Figure 4.47 Single-Blinder Scheme Logic Diagram
185
Figure 4.48 Single-Blinder Typical Settings
187
Figure 4.49 Double-Blinder Scheme Operating Characteristics
187
Figure 4.50 Double-Blinder Scheme Logic Diagram
189
Figure 4.51 Double-Blinder Typical Settings
191
Table 4.16 Inadvertent Energization Protection Settings
192
Figure 4.52 Inadvertent Energization Logic Diagram
192
Table 4.17 Phase Overcurrent Settings
193
Table 4.18 Neutral Overcurrent Settings
194
Figure 4.53 SEL-700G0, SEL-700G1, SEL-700GT+ Instantaneous Overcurrent Element Logic (Generator Protection)
195
Figure 4.54 SEL-700GT Instantaneous Overcurrent Element Logic (Intertie Protection)
196
Figure 4.55 Instantaneous Overcurrent Element Logic (Feeder Protection, SEL-700GW)
197
Figure 4.56 SEL-700G0, SEL-700G1, SEL-700GGT Instantaneous Neutral-Ground Overcurrent Element Logic (Generator Protection)
198
Figure 4.57 Ground Fault Protection Using Core-Balance CT
198
Table 4.19 Residual Overcurrent Settings
199
Table 4.20 Negative-Sequence Overcurrent Settings
199
Table 4.21 Maximum Phase Time-Overcurrent Settings
200
Figure 4.58 Maximum Phase Time-Overcurrent Elements
200
Table 4.22 Negative-Sequence Time-Overcurrent Settings
201
Figure 4.59 Negative-Sequence Time-Overcurrent Elements
201
Table 4.23 Neutral Time-Overcurrent Settings
202
Table 4.24 Residual Time-Overcurrent Settings
202
Figure 4.60 Neutral Time-Overcurrent Element 51NT
202
Figure 4.61 Residual Time-Overcurrent Elements
203
Table 4.25 Equations Associated with U.S. Curves
204
Table 4.26 Equations Associated with IEC Curves
204
Figure 4.62 U.S. Moderately Inverse Curve: U1
205
Figure 4.63 U.S. Inverse Curve: U2
205
Figure 4.64 U.S. very Inverse Curve: U3
205
Figure 4.65 U.S. Extremely Inverse Curve: U4
205
Figure 4.66 U.S. Short-Time Inverse Curve: U5
206
Figure 4.67 IEC Class a Curve (Standard Inverse): C1
206
Figure 4.68 IEC Class B Curve (very Inverse): C2
206
Figure 4.69 IEC Class C Curve (Extremely Inverse): C3
206
Figure 4.70 IEC Long-Time Inverse Curve: C4
207
Figure 4.71 IEC Short-Time Inverse Curve: C5
207
Figure 4.72 General Logic Flow of Directional Control for Residual Ground Overcurrent Elements
208
Figure 4.73 General Logic Flow of Directional Control for Neutral-Ground Overcurrent Elements
208
Table 4.27 Available Ground Directional Elements
209
Table 4.28 Best Choice Ground Directional Element Logic
210
Table 4.29 Ground Directional Element Availability by Voltage Transformer Connections on X Side
210
Table 4.30 Ground Directional Element Availability by Voltage Transformer Connections on y Side
211
Figure 4.74 Internal Enables (DIRQE and DIRQGE) Logic for Negative-Sequence Voltage-Polarized Directional Elements
214
Figure 4.75 Internal Enables (DIRVE and DIRIE) Logic for Zero-Sequence Voltage-Polarized Directional Element with IG as Operate Quantity and Channel in Current-Polarized Directional Element
215
Figure 4.76 Internal Enables (DIRNE) Logic for Zero-Sequence Voltage-Polarized Directional Element with in as Operate Quantity
215
Figure 4.77 Negative-Sequence Voltage-Polarized Directional Element for Residual-Ground Overcurrent Elements
216
Figure 4.78 Zero-Sequence Voltage-Polarized Directional Element for Residual-Ground Overcurrent Elements
217
Figure 4.79 Channel in Current-Polarized Directional Element
218
Figure 4.80 Zero-Sequence Voltage-Polarized Directional Element for Neutral-Ground Overcurrent Elements
219
Figure 4.81 Routing of Directional Elements to Residual-Ground Overcurrent Elements
220
Figure 4.82 Routing of Neutral Directional Element to Neutral-Ground Overcurrent Elements
220
Figure 4.83 Direction Forward/Reverse Logic for Residual-Ground Overcurrent Elements
221
Figure 4.84 Direction Forward/Reverse Logic for Neutral-Ground Overcurrent Elements
221
Figure 4.85 General Logic Flow of Directional Control for Negative-Sequence and Phase Overcurrent Elements
222
Figure 4.86 Negative-Sequence Voltage-Polarized Directional Element for Negative-Sequence and Phase Overcurrent Elements
224
Figure 4.87 Positive-Sequence Voltage-Polarized Directional Element for Phase Overcurrent Elements
225
Figure 4.88 Routing of Directional Elements to Negative-Sequence and Phase Overcurrent Elements
226
Figure 4.89 Direction Forward/Reverse Logic for Negative-Sequence Overcurrent Elements
226
Table 4.31 Directional Element Settings for X Side and y Side
227
Figure 4.90 Direction Forward/Reverse Logic for Phase Overcurrent Elements
227
Table 4.32 Directional Control Settings Not Made for Particular Conditions
230
Table 4.33 Overcurrent Elements Controlled by Level Direction Settings DIR1X, DIR2X, DIR1Y, and DIR2Y
230
Table 4.34 Relay Word Bits Associated with X-Side and Y-Side Overcurrent Elements
230
Table 4.35 Z Constant for Z2R Setting
233
Table 4.36 Z Constant for Z0R Setting
236
Figure 4.91 Zero-Sequence Impedance Network and Relay Polarity
237
Figure 4.92 Zero-Sequence Impedance Plot for Solidly-Grounded, Mostly Inductive System
237
Figure 4.93 Hybrid Power System with Neutral-Ground Resistor
238
Table 4.37 Load-Encroachment Settings
240
Figure 4.94 Load-Encroachment Logic for X Side
241
Figure 4.95 Load-Encroachment Logic for y Side
242
Table 4.38 Power Element Settings
244
Figure 4.96 Three-Phase Power Elements Logic
245
Figure 4.97 Power Elements Operation in the Real/Reactive Power Plane
246
Table 4.39 Signals Used for Frequency Measurement and Tracking
247
Table 4.40 Frequency Settings
248
Figure 4.98 X-Side Over- and Underfrequency Element Logic
248
Table 4.41 Rate-Of-Change-Of-Frequency Settings
249
Figure 4.99 Y-Side Over- and Underfrequency Element Logic
249
Table 4.42 Time Window Versus 81Rmntp Setting
250
Figure 4.100 81R Frequency Rate-Of-Change Scheme Logic
250
Table 4.43 Undervoltage Settings
252
Table 4.44 Overvoltage Settings
253
Figure 4.101 Undervoltage Element Logic
254
Figure 4.102 Overvoltage Element Logic
255
Table 4.45 RTD Settings
256
Figure 4.103 Zero-Sequence Overvoltage Elements (59G)
256
Figure 4.104 Channel VS Voltage Elements (27S, 59S)
256
Table 4.46 RTD Resistance Versus Temperature
258
Table 4.47 X-Side Synchronism-Check Settings
259
Figure 4.105 Synchronism-Check Function Voltage Elements
261
Figure 4.106 Synchronism-Check Function Voltage Element Characteristic
261
Figure 4.107 Synchronism-Check Function 25RCFX and SYNCPX/SYNCPY Setting Examples
262
Figure 4.108 Synchronism-Check Function Slip Elements
263
Figure 4.109 Synchronism-Check Function Angle Elements
264
Figure 4.110 Breaker Close Failure Logic Diagram
264
Figure 4.111 Synchronism-Check Function Angle Characteristics
265
Figure 4.112 Synchronism-Check Voltage Window and Slip Frequency Elements
271
Figure 4.113 Synchronism-Check Elements
272
Table 4.48 Synchronism-Check Settings
273
Figure 4.114 Angle Difference between VPY and VS Compensated by Breaker Close Time (Fpy < Fs and VPY Shown as Reference in this Example)
276
Figure 4.115 Overall Functional Block Diagram
279
Table 4.49 Autosynchronism Settings
280
Figure 4.116 Simplified Block Diagram, Frequency and Phase Matching Elements
281
Figure 4.117 Simplified Block Diagram, Voltage Matching Elements
282
Figure 4.118 Synchroscope
283
Figure 4.119 Graphical Display of Generator Autosynchronism Report
284
Table 4.50 Loss of Potential (LOP) Settings
285
Other Settings
286
Table 4.51 Demand Meter Settings
286
Figure 4.120 Loss-Of-Potential Generic Logic (Applies to both X and y Sides)
286
Figure 4.121 Demand Current Logic Outputs
287
Figure 4.122 Response of Thermal and Rolling Demand Meters to a Step Input (Setting DMTC = 15 Minutes)
288
Figure 4.123 Voltage
289
Table 4.52 Pole Open Logic Settings
291
Figure 4.124 Pole Open Logic Diagram, Breaker 52X
291
Table 4.53 Trip/Close Logic Settings
292
Figure 4.125 Pole Open Logic Diagram, Breaker 52Y
292
Figure 4.126 Trip Logic
294
Figure 4.127 Typical Generator Trip TR Logic (SEL-700G0, SEL-700G1, SEL-700GT)
295
Figure 4.128 Typical Intertie Trip TR Logic (SEL-700GT)
295
Figure 4.129 Typical Feeder Trip TR Logic (SEL-700GW)
296
Figure 4.130 Close Logic
297
Figure 4.131 Typical Generator or Intertie Close CL Logic (SEL-700G or GT)
298
Logic Settings (SET L Command)
299
Table 4.54 Enable Settings
299
Figure 4.132 Typical Feeder Close CL Logic (SEL-700GW)
299
Figure 4.133 Schematic Diagram of a Traditional Latching Device
300
Figure 4.134 Logic Diagram of a Latch Switch
300
Table 4.55 Latch Bits Equation Settings
301
Figure 4.135 SEL OGIC Control Equation Variable/Timers SV01/SV01T-SV32T
302
Table 4.56 SEL OGIC Control Equation Operators (Listed in Operator Precedence)
303
Figure 4.136 Result of Falling-Edge Operator on a Deasserting Input
305
Table 4.59 Counter Input/Output Description
309
Table 4.60 Order of Precedence of the Control Inputs
310
Figure 4.139 Example of the Effects of the Input Precedence
310
Table 4.61 Control Output Equations and Contact Behavior Settings
311
Global Settings (SET G Command)
312
Table 4.62 General Global Settings
312
Table 4.63 Event Messenger Settings
312
Table 4.64 Setting Group Selection
314
Table 4.65 Time and Date Management Settings
314
Table 4.66 Breaker Failure Setting
317
Figure 4.140 Breaker Failure Logic
317
Figure 4.141 Analog Input Card Adaptive Name
318
Table 4.67 Summary of Steps
319
Figure 4.142 Settings to Configure Input 1 as a 4-20 Ma Transducer Measuring Temperatures between -50°C and 150°C
320
Table 4.68 Analog Input Card in Slot 3
321
Figure 4.143 Analog Output Number Allocation
321
Table 4.69 Output Setting for a Card in Slot 3
322
Figure 4.144 Analog Output Settings
322
Figure 4.145 DC Mode Processing
323
Figure 4.146 AC Mode Processing
323
Table 4.70 Slot C Input Debounce Settings
324
Table 4.71 Data Reset Settings
324
Figure 4.147 Timing Diagram for Debounce Timer Operation When Operating in AC Mode
324
Port Settings (SET P Command)
325
Table 4.72 Setting Change Disable Setting
325
Table 4.73 Time Synchronization Source Setting
325
Table 4.74 Front-Panel Serial Port Settings
326
Table 4.75 Ethernet Port Settings
326
Table 4.76 Port Number Settings that Must be Unique
327
Table 4.77 Fiber-Optic Serial Port Settings
327
Table 4.78 Rear-Panel Serial Port (EIA-232) Settings
327
Table 4.79 Rear-Panel Serial Port (EIA-232/EIA-485) Settings
328
Front-Panel Settings (SET F Command)
329
Table 4.80 Rear-Panel Devicenet Port Settings
329
Table 4.81 Display Point and Local Bit Default Settings
329
Table 4.82 LCD Display Settings
329
Table 4.83 Settings that Always, Never, or Conditionally Hide a Display Point
331
Table 4.84 Entries for the Four Strings
331
Figure 4.148 Display Point Settings
332
Figure 4.149 Front-Panel Display-Both HV and LV Breakers Open
332
Figure 4.150 Front-Panel Display-HV Breaker Closed, LV Breaker Open
332
Figure 4.151 Front-Panel Display-Both HV and LV Breakers Closed
332
Table 4.85 Binary Entry in the Name String Only
333
Figure 4.152 Front-Panel Display-LV Breaker Closed
333
Figure 4.153 Front-Panel Display-HV Breaker Open, LV Breaker Closed
333
Figure 4.154 Front-Panel Display for a Binary Entry in the Name String Only
333
Table 4.86 Analog Entry in the Name String Only
334
Figure 4.155 Front-Panel Display for an Analog Entry in the Name String Only
334
Table 4.87 Entry in the Name String and the Alias Strings
335
Table 4.88 Example Settings and Displays
335
Figure 4.156 Front-Panel Display for an Entry in (A) Boolean Name and Alias Strings and (B) Analog Name and User Text and Formatting Strings
335
Figure 4.157 Front-Panel Display for an Entry in (A) Boolean Name and Alias Strings and (B) Analog Name, User Text and Formatting Strings, and Engineering Units
335
Figure 4.158 Adding Temperature Measurement Display Points
336
Figure 4.159 Rotating Display
336
Figure 4.160 Adding Two Local Bits
337
Table 4.89 Target LED Settings
338
Table 4.90 Pushbutton LED Settings
339
Report Settings (SET R Command)
340
Table 4.91 Auto-Removal Settings
340
Table 4.92 SER Trigger Settings
341
Table 4.93 Enable Alias Settings
341
Table 4.94 SET R SER Alias Settings
342
Table 4.95 Event Report Settings
342
Table 4.96 Generator Autosynchronism Report Settings
342
DNP Map Settings (SET DNP N Command
343
Table 4.97 Generator Autosynchronism Report Data
343
Table 4.98 Load Profile Settings
343
Modbus Map Settings (SET M Command)
344
Table 4.100 User Map Register Settings
344
Section 5: Metering and Monitoring
345
Overview
345
Power Measurement Conventions
346
Delta-Connected Cts
346
Metering
346
Figure 5.1 Complex Power Measurement Conventions
346
Table 5.1 Measured Fundamental Meter Values
347
Figure 5.2 METER Command Report for SEL-700G1 with Synchronism Check and Neutral Voltage Inputs
348
Table 5.2 Thermal Meter Values
349
Table 5.3 RTD Input Status Messages
349
Figure 5.3 MET T Report for SEL-700G0 Model
349
Figure 5.4 Device Response to the METER E Command
350
Figure 5.5 Device Response to the METER RE Command
350
Figure 5.6 Device Response to the METER WE Command
350
Table 5.4 Maximum/Minimum Meter Values
351
Figure 5.7 Device Response to the METER M Command
352
Figure 5.8 Device Response to the METER RM Command
352
Table 5.5 RMS Meter Values
353
Figure 5.9 Device Response to the METER MV Command
353
Figure 5.10 Device Response to the METER RMS Command
354
Figure 5.11 Device Response to the METER AI Command
354
Table 5.6 Demand Values
355
Figure 5.12 Device Response to the MET de Command
355
Figure 5.13 Device Response to the MET PE Command
355
Table 5.7 Synchrophasor Measured Values
356
Table 5.8 Measured Differential Meter
357
Table 5.9 Measured Harmonic Meter Values
357
Figure 5.14 METER DIF (Differential) Command Report
357
Load Profiling
358
Figure 5.15 METER H (Harmonic) Command Report
358
Figure 5.16 Device Response to the LDP Command
358
Breaker Monitor
359
Table 5.10 Breaker Maintenance Information for a 25 Kv Circuit Breaker
359
Table 5.11 Breaker Monitor Settings
360
Figure 5.17 Plotted Breaker Maintenance Points for a 25 Kv Circuit Breaker
361
Figure 5.18 SEL-700G Breaker Maintenance Curve for a 25 Kv Circuit Breaker
362
Figure 5.19 Operation of SEL OGIC Control Equation Breaker Monitor Initiation Setting
363
Figure 5.20 Breaker Monitor Accumulates 10 Percent Wear
364
Figure 5.21 Breaker Monitor Accumulates 25 Percent Wear
365
Figure 5.22 Breaker Monitor Accumulates 50 Percent Wear
366
Figure 5.23 Breaker Monitor Accumulates 100 Percent Wear
367
Table 5.12 Breaker Monitor Output
368
Figure 5.24 Input Inxxx Connected to Trip Bus for Breaker Monitor Initiation
370
Section 6: Settings
371
Overview
371
Table 6.1 Methods of Accessing Settings
371
View/Change Settings with Front Panel
372
Figure 6.1 Front-Panel Setting Entry Example for the SEL-700GT Relay
373
View/Change Settings over Communications Port
374
Table 6.2 SHOW Command Options
374
Table 6.3 SET Command Options
374
Table 6.4 SET Command Editing Keystrokes
375
Table 6.5 SET Command Format
375
Setting Entry Error Messages
376
Table 6.6 Setting Interdependency Error Messages
376
SEL-700G Settings Sheets
377
Table SET.1 Port Number Settings that Must be Unique
427
Section 7: Communications
445
Overview
445
Communications Interfaces
445
Table 7.1 SEL-700G Communications Port Interfaces
445
Figure 7.1 Simple Ethernet Network Configuration
447
Figure 7.2 Ethernet Network Configuration with Dual Redundant Connections (Failover Mode)
448
Figure 7.3 Ethernet Network Configuration with Ring Structure (Switched Mode)
448
Figure 7.4 IRIG-B Input (Relay Terminals B01-B02)
450
Figure 7.5 IRIG-B Input Via EIA-232 Port 3 (SEL Communications Processor as Source)
450
Figure 7.6 IRIG-B Input VIA EIA-232 Port 3 (SEL-2401/2404/2407 Time Source)
450
Figure 7.7 IRIG-B Input VIA Fiber-Optic EIA-232 Port 2 (SEL-2030/2032 Time Source)
451
Figure 7.8 IRIG-B Input VIA Fiber-Optic EIA-232 Port 2 (SEL-2401/2404/2407 Time Source)
451
Table 7.2 EIA-232/EIA-485 Serial Port Pin Functions
452
Figure 7.9 EIA-232 DB-9 Connector Pin Numbers
452
Figure 7.10 SEL Cable C234A-SEL-700G to DTE Device
452
Figure 7.11 SEL Cable C227A-SEL-700G to DTE Device
453
Figure 7.12 SEL Cable C222-SEL-700G to Modem
453
Figure 7.13 SEL Cable C272A-SEL-700G to SEL Communications Processor (Without IRIG-B Signal)
453
Figure 7.14 SEL Cable C273A-SEL-700G to SEL Communications Processor (with IRIG-B Signal)
453
Communications Protocols
454
Table 7.3 Protocols Supported on the Various Ports
454
Figure 7.15 SEL Cable C387-SEL-700G to SEL-3010
454
Table 7.4 Settings Associated with SNTP
457
SEL ASCII Protocol and Commands
458
Table 7.5 Serial Port Automatic Messages
459
Table 7.6 Command Response Header Definitions
462
Table 7.7 Access Commands
462
Table 7.8 ANALOG Command
464
Table 7.9 ANALOG Command Format
464
Figure 7.16 BRE X Command Response
466
Figure 7.17 BRE X W Command Response
467
Figure 7.18 BRE X R Command Response
467
Table 7.10 COM Command
469
Table 7.11 CONTROL Command
469
Table 7.12 Three Remote Bit States
469
Table 7.13 COPY Command
470
Table 7.14 COUNTER Command
470
Table 7.15 Date Command
470
Table 7.16 EVENT Command (Event Reports)
471
Figure 7.19 Ethernet Port (PORT 1) Status Report
471
Figure 7.20 Non-Redundant Port Response
471
Table 7.17 EVENT Command Format
472
Table 7.18 FILE Command
472
Table 7.19 GEN Command Variants
472
Table 7.20 GSH Command Variants
473
Figure 7.21 GEN Command Response
473
Figure 7.22 GSH Command Response
473
Table 7.21 GOOSE Command Variants
474
Table 7.22 GOOSE IED Description
474
Figure 7.23 GOOSE Command Response
475
Table 7.23 GROUP Command
476
Table 7.25 HISTORY Command
477
Table 7.26 IDENTIFICATION Command
477
Table 7.27 IRI Command
477
Table 7.28 LDP Commands
478
Table 7.29 LDP Command Parameters
478
Table 7.30 L_D Command (Load Firmware)
478
Table 7.32 Meter Command
479
Table 7.33 Meter Command Parameters
480
Table 7.35 PASSWORD Command
481
Table 7.36 PAS Command Format
481
Table 7.37 Factory-Default Passwords for Access Levels 1, 2, and C
481
Table 7.38 Valid Password Characters
481
Figure 7.24 Command Sequence to Change Password
481
Figure 7.25 PING Command Response
482
Table 7.39 PUL Outnnn Command
483
Table 7.40 QUIT Command
483
Table 7.41 R_S Command (Restore S)
483
Table 7.42 SER Command (Sequential Events Recorder Report)
483
Table 7.43 SER Command Format
483
Table 7.44 SER D Command
484
Table 7.45 SET Command (Change Settings)
484
Table 7.46 SET Command Format
485
Table 7.47 SET Command Editing Keystrokes
485
Table 7.48 SHOW Command (Show/View Settings)
485
Table 7.49 SHOW Command Format
486
Figure 7.26 SHOW Command Example
486
Table 7.50 STATUS Command (Relay Self-Test Status)
488
Table 7.51 STATUS Command Report and Definitions
488
Figure 7.27 Typical Relay Output for STATUS S Command
489
Table 7.53 SYN Command
490
Table 7.54 TARGET Command (Display Relay Word Bit Status)
490
Table 7.55 TARGET Command Format
490
Table 7.56 Front-Panel Leds and the TAR 0 Command
491
Table 7.57 TIME Command (View/Change Time)
491
Table 7.58 TRIGGER Command (Trigger Event Report)
491
Table 7.59 VEC Command
492
Section 8: Front-Panel Operations
493
Overview
493
Front-Panel Layout
493
Human-Machine Interface
494
Figure 8.1 Front-Panel Overview
494
Table 8.1 Front-Panel Automatic Messages (FP_AUTO := OVERRIDE)
495
Figure 8.2 Access Level Security Padlock Symbol
495
Figure 8.3 Password Entry Screen
495
Table 8.2 Front-Panel Pushbutton Functions
496
Figure 8.4 Front-Panel Pushbuttons
496
Figure 8.5 Main Menu
497
Figure 8.6 MAIN Menu and METER Submenu
497
Figure 8.7 METER Menu and ENERGY Submenu
498
Figure 8.8 Relay Response When Energy (or Max/Min, Demand, Peak Demand) Metering Is Reset
498
Figure 8.9 Relay Response When no Analog Cards Are Installed
498
Figure 8.10 Relay Response When no Math Variables Enabled
498
Figure 8.11 MAIN Menu and EVENTS Submenu
499
Figure 8.12 EVENTS Menu and DISPLAY Submenu
499
Figure 8.13 Relay Response When no Event Data Available
499
Figure 8.14 Relay Response When Events Are Cleared
499
Figure 8.15 MAIN Menu and TARGETS Submenu
500
Figure 8.16 TARGETS Menu Navigation
500
Figure 8.17 MAIN Menu and CONTROL Submenu
500
Figure 8.18 CONTROL Menu and OUTPUTS Submenu
501
Figure 8.19 CONTROL Menu and LOCAL BITS Submenu
501
Figure 8.20 MAIN Menu and SET/SHOW Submenu
502
Figure 8.21 SET/SHOW Menu
503
Figure 8.22 MAIN Menu and Status Submenu
503
Operation and Target Leds
504
Figure 8.23 MAIN Menu and BREAKER Monitor Submenu
504
Figure 8.24 Factory-Default Front-Panel Leds for the SEL-700G Generator Protection Relay
504
Table 8.3 Possible Warning Conditions (Flashing TRIP LED)
505
Figure 8.25 TARGET RESET Pushbutton
506
Figure 8.26 Operator Control Pushbuttons and Leds
506
Table 8.4 SEL-700GT and SEL-700GW Front-Panel Operator Control Functions
508
Table 8.5 SEL-700G and SEL-700G1 Front-Panel Operator Control Functions
509
Section 9: Analyzing Events
511
Overview
511
Event Reporting
512
Figure 9.1 Example Event Summary
513
Table 9.1 Event Types
514
Figure 9.2 Sample Event History
516
Table 9.2 Analog Event Report Columns Definitions
518
Figure 9.3 Example Standard 15-Cycle Analog Event Report 1/4-Cycle Resolution
519
Figure 9.4 Derivation of Analog Event Report Current Values and RMS Current Values from Sampled Current Waveform
524
Figure 9.5 Derivation of Phasor RMS Current Values from Event Report Current Values
525
Figure 9.6 Sample CEV Report Viewed with Analytic Assistant or Quickset Via SEL-5601
526
Figure 9.7 Options for Converting CEV Reports to COMTRADE in Analytic Assistant
526
Table 9.3 Digital Event Report Column Definitions
527
Figure 9.8 Example Standard 15-Cycle Digital Event Report (EVE D X Command)
533
Figure 9.9 Example 15-Cycle Stator Ground Event Report (EVE GND) 1/4 Cycle Resolution
534
Table 9.4 Stator Ground Event Report (EVE GND) Digital Column Definitions for Protection, Control, and I/O Elements
536
Table 9.5 Differential Event Report Column Definitions for Analog Quantities
536
Table 9.6 Differential Event Report Digital Column Definitions for Protection, Control, and I/O Elements
537
Figure 9.10 Example Standard 15-Cycle Differential Event Report (EVE DIF2 Command)
538
Figure 9.11 Example Sequential Events Recorder (SER) Event Report
540
Figure 9.12 Example SYN Command Response
540
Section 10: Testing and Troubleshooting
543
Overview
543
Testing Tools
543
Figure 10.1 Low-Level Test Interface (J2)
544
Figure 10.2 C700G Ribbon Cable Connector Diagram
544
Table 10.1 Cable C700G Connection Options
545
Table 10.2 Resultant Scale Factors for Inputs
545
Commissioning Tests
547
Figure 10.3 Three-Phase Wye AC Connections
549
Figure 10.4 Three-Phase Open-Delta AC Connections
549
Table 10.3 Serial Port Commands that Clear Relay Data Buffers
550
Table 10.4 CTRX Phase Current Measuring Accuracy
551
Figure 10.5 CTRX Current Source Connections
551
Table 10.5 CTRY Phase Current Measuring Accuracy
552
Figure 10.6 CTRY Current Source Connections
552
Figure 10.7 Wye Voltage Source Connections
552
Table 10.6 Power Quantity Accuracy-Wye Voltages
553
Figure 10.8 Delta Voltage Source Connections
553
Periodic Tests (Routine Maintenance)
554
Table 10.7 Power Quantity Accuracy-Delta Voltages
554
Table 10.8 Periodic Relay Checks
554
Self-Test
555
Table 10.9 Relay Self-Tests
555
Troubleshooting
558
Table 10.10 Troubleshooting
558
Technical Assistance
559
Table A.1 Firmware Revision History
561
Appendix A: Firmware and Manual Versions Firmware
562
Table A.2 Devicenet Card Versions
566
Table A.3 EDS File Compatibility
566
ICD File
567
Table A.4 SEL-700G ICD Revision History
567
Table A.5 Instruction Manual Revision History
570
Appendix B: Firmware Upgrade Instructions
579
Overview
579
Upgrade Firmware Using AC SEL ERATOR Quickset
580
Upgrade Firmware Using a Terminal Emulator
584
Figure B.1 Firmware File Transfer Process
585
Relays with IEC 61850 Option
586
Technical Assistance
587
Appendix C: SEL Communications Processors
589
SEL Communications Protocols
589
Table C.1 Supported Serial Command Sets
589
Table C.2 Compressed ASCII Commands
590
SEL Communications Processor
591
Figure C.1 SEL Communications Processor Star Integration Network
591
Table C.3 SEL Communications Processors Protocol Interfaces
592
Figure C.2 Multitiered SEL Communications Processor Architecture
592
SEL Communications Processor and Relay Architecture
593
Figure C.3 Enhancing Multidrop Networks with SEL Communications Processors
594
SEL Communications Processor Example
595
Table C.4 SEL Communications Processor Port 1 Settings
595
Figure C.4 Example of SEL Relay and SEL Communications Processor Configuration
595
Table C.5 SEL Communications Processor Data Collection Automessages
596
Table C.6 SEL Communications Processor Port 1 Automatic Messaging Settings
596
Table C.7 SEL Communications Processor Port 1 Region Map
596
Table C.8 Communications Processor METER Region Map for GW Model
597
Table C.9 Communications Processor METER Region Map for G0 Model Without Synchronism
597
Table C.10 Communications Processor METER Region Map for G0 Model with Synchronism
598
Table C.11 Communications Processor METER Region Map for G1 Model Without Synchronism
599
Table C.12 Communications Processor METER Region Map for G1 Model with Synchronism
599
Table C.13 Communications Processor METER Region Map for GT Model with Single Synchronism
600
Table C.14 Communications Processor METER Region Map for GT Model with Dual Single Synchronism
601
Table C.15 Communications Processor TARGET Region
602
Table C.16 Communications Processor DEMAND Region Map
603
Appendix Ddnp3 Communications
605
Overview
605
Introduction to DNP3
605
Table D.1 DNP3 Implementation Levels
605
Table D.2 Selected DNP3 Function Codes
607
Table D.3 DNP3 Access Methods
608
DNP3 in the SEL-700G
610
Table D.4 TCP/UDP Selection Guidelines
610
Table D.5 DNP3 Access Methods
610
Figure D.2 Message Transmission Timing
612
Table D.6 SEL-700G Event Buffer Capacity
613
Table D.7 Port DNP3 Protocol Settings
615
DNP3 Documentation
616
Table D.8 Serial Port DNP3 Modem Settings
616
Table D.9 SEL-700G DNP Object List
617
Table D.10 DNP3 Reference Data Map
622
Table D.11 DNP3 Default Data Map
624
Table D.12 SEL-700G Object 12 Control Operations
626
Figure D.3 Sample Response to SHO DNP Command
628
Figure D.4 Port MAP Command
629
Table D.13 Sample Custom DNP3 AI Map
630
Figure D.5 Sample Custom DNP3 AI Map Settings
631
Figure D.6 Analog Input Map Entry in Quickset Software
632
Figure D.7 AI Point Label, Scaling, and Dead Band in Quickset
632
Figure D.8 Sample Custom DNP3 BO Map Settings
632
Figure D.9 Binary Output Map Entry in Quickset Software
633
Appendix E: Modbus RTU Communications
635
Overview
635
Communications Protocol
635
Table E.1 Modbus Query Fields
635
Table E.2 SEL-700G Modbus Function Codes
636
Table E.3 SEL-700G Modbus Exception Codes
637
Table E.4 01H Read Discrete Output Coil Status Command
637
Table E.5 Responses to 01H Read Discrete Output Coil Query Errors
638
Table E.6 02H Read Input Status Command
638
Table E.7 02H SEL-700G Inputs
639
Table E.8 Responses to 02H Read Input Query Errors
643
Table E.9 03H Read Holding Register Command
643
Table E.10 Responses to 03H Read Holding Register Query Errors
643
Table E.11 04H Read Input Register Command
644
Table E.12 Responses to 04H Read Input Register Query Errors
644
Table E.13 05H Force Single Coil Command
644
Table E.14 01H, 05H SEL-700G Output
644
Table E.15 Responses to 05H Force Single Coil Query Errors
647
Table E.16 06H Preset Single Register Command
647
Table E.17 Responses to 06H Preset Single Register Query Errors
647
Table E.18 08H Loopback Diagnostic Command
648
Table E.19 Responses to 08H Loopback Diagnostic Query Errors
648
Table E.20 10H Preset Multiple Registers Command
648
Table E.21 10H Preset Multiple Registers Query Error Messages
649
Table E.22 60H Read Parameter Information Command
649
Table E.23 60H Read Parameter Descriptor Field Definition
649
Table E.24 60H Read Parameter Conversion Field Definition
650
Table E.25 Responses to 60H Read Parameter Information Query Errors
650
Table E.26 61H Read Parameter Text Command
651
Table E.27 61H Read Parameter Text Query Error Messages
651
Table E.28 62H Read Enumeration Text Command
651
Table E.29 61H Read Parameter Enumeration Text Query Error Messages
652
Table E.30 7Dh Encapsulated Packet with Control Command
652
Table E.31 7Dh Encapsulated Packet Query Errors
652
Table E.32 7Eh NOP Command
653
Table E.33 Modbus Register Labels for Use with SET M Command
654
Modbus Register Map
659
Table E.34 Modbus Register Map
659
Appendix F: IEC 61850 Communications
687
Features
687
Introduction to IEC 61850
688
Table F.1 IEC 61850 Document Set
688
IEC 61850 Operation
689
Table F.2 Example IEC 61850 Descriptor Components
690
Table F.3 SEL-700G Logical Devices
690
Table F.4 Buffered Report Control Block Client Access
692
Figure F.1 SEL-700G Predefined Reports
692
Table F.5 Unbuffered Report Control Block Client Access
693
Figure F.2 SEL-700G Datasets
694
Figure F.3 GOOSE Quality
695
IEC 61850 Configuration
697
Table F.6 IEC 61850 Settings
697
Logical Node Extensions
699
Table F.7 New Logical Node Extensions
699
Table F.8 Thermal Metering Data Logical Node Class Definition
699
Table F.9 Demand Metering Statistics Logical Node Class Definition
700
Table F.10 Circuit Breaker Supervision (Per-Phase) Logical Node Class Definition
701
Table F.11 Compatible Logical Nodes with Extensions
701
Table F.12 Measurement Logical Node Class Definition
701
Table F.14 Metering Statistics Logical Node Class Definition
703
Table F.15 Circuit Breaker Logical Node Class Definition
703
Logical Nodes
704
Table F.16 Logical Device: PRO (Protection)
704
Table F.17 Logical Device: MET (Metering)
714
Table F.18 Logical Device: con (Remote Control)
720
Table F.19 Logical Device: ANN (Annunciation)
720
Protocol Implementation Conformance Statement
724
Table F.20 Logical Device: CFG (Configuration)
724
Table F.21 PICS for A-Profile Support
724
Table F.22 PICS for T-Profile Support
724
Table F.23 MMS Service Supported Conformance
725
Table F.24 MMS Parameter CBB
727
Table F.25 Alternate Access Selection Conformance Statement
727
Table F.26 Variableaccessspecification Conformance Statement
728
Table F.27 Variablespecification Conformance Statement
728
Table F.28 Read Conformance Statement
728
Table F.29 Getvariableaccessattributes Conformance Statement
728
Table F.30 Definenamedvariablelist Conformance Statement
728
Table F.31 Getnamedvariablelistattributes Conformance Statement
729
Table F.32 Deletenamedvariablelist
729
ACSI Conformance Statements
730
Table F.34 ACSI Basic Conformance Statement
730
Table F.35 ACSI Models Conformance Statement
730
Table F.36 ACSI Services Conformance Statement
731
Appendix G: Devicenet Communications
735
Overview
735
Devicenet Card
735
Figure G.1 Devicenet Card Component Overview
735
Features
736
Electronic Data Sheet
737
Appendix H Synchrophasors
739
Overview
739
Synchrophasor Measurement
740
Figure H.1 Phase Reference
740
Figure H.2 Waveform at Relay Terminals May Have a Phase Shift
741
Figure H.3 Correction of Measured Phase Angle
741
Settings for Synchrophasors
742
Table H.1 PMU Settings in the SEL-700G for C37.118 Protocol in Global Settings
742
Table H.2 Synchrophasor Order in Data Stream (Voltages and Currents)
745
Table H.3 User-Defined Analog Values Selected by the NUMANA Setting
746
Table H.4 User-Defined Digital Status Words Selected by the NUMDSW Setting
746
Serial Port Settings for IEEE C37.118 Synchrophasors
747
Table H.5 SEL-700G Serial Port Settings for Synchrophasors
747
Ethernet Port Settings for IEEE C37.118 Synchrophasors
748
Table H.6 SEL-700G Ethernet Port Settings for Synchrophasors
748
Figure H.4 TCP Connection
749
Synchrophasor Relay Word Bits
750
Table H.7 Synchrophasor Trigger Relay Word Bits
750
Table H.8 Time-Synchronization Relay Word Bits
751
Table H.9 TQUAL Bits Translation to Time Quality
751
View Synchrophasors Using the MET PM Command
752
C37.118 Synchrophasor Protocol
753
Figure H.7 Sample MET PM Command Response
753
Table H.10 Frequency Tracking Side and Quantity Based on the SEL-700G Model
754
Table H.11 Size of a C37.118 Synchrophasor Message
755
Table H.12 Serial Port Bandwidth for Synchrophasors (in Bytes)
755
IEEE C37.118 PMU Setting Example
756
Table H.13 Example Synchrophasor Global Settings
757
Table H.14 Example Synchrophasor Logic Settings
757
Table H.15 Example Synchrophasor SEL OGIC Settings
758
Table H.16 Example Synchrophasor Port Settings
758
Appendix I: MIRRORED BITS Communications
759
Overview
759
Operation
759
Settings
763
Table I.4 MIRRORED BITS Communications Message Transmission Period
763
Table I.5 MIRRORED BITS Protocol Settings
763
Table J.1 SEL-700G Relay Word Bits
765
Appendix J: Relay Word Bits Overview
766
Table J.2 Hidden Overcurrent Element Relay Word Bits Per the SEL-700G Model
769
Definitions
771
Table J.3 Relay Word Bit Definitions for the SEL-700G
771
Table K.1 Analog Quantities
794
Table 4.99 DNP Map Settings
810
Table 7.34 Meter Class
810
Table 7.52 SUMMARY Command
811
Advertisement
Advertisement
Related Products
Schweitzer Engineering Laboratories SEL-700G Series
Schweitzer Engineering Laboratories SEL-700G0
Schweitzer Engineering Laboratories SEL-700GT
Schweitzer Engineering Laboratories SEL-700GW
Schweitzer Engineering Laboratories SEL-701
Schweitzer Engineering Laboratories SEL-787
Schweitzer Engineering Laboratories SEL-787-2
Schweitzer Engineering Laboratories SEL-787-2E
Schweitzer Engineering Laboratories SEL-787-4X
Schweitzer Engineering Laboratories SEL-749M
Schweitzer Engineering Laboratories Categories
Relays
Computer Hardware
Transceiver
Protection Device
Measuring Instruments
More Schweitzer Engineering Laboratories Manuals
Login
Sign In
OR
Sign in with Facebook
Sign in with Google
Upload manual
Upload from disk
Upload from URL