Download Print this page

DZ SIENNA Service Manual

Hf receiver/transceiver
Hide thumbs Also See for SIENNA:

Advertisement

Quick Links

Price: $30.00
Page
DZKit
SERVICE MANUAL
SIENNA
HF REcEIVER/Transceiver

Advertisement

loading
Need help?

Need help?

Do you have a question about the SIENNA and is the answer not in the manual?

Questions and answers

Summary of Contents for DZ SIENNA

  • Page 1 Price: $30.00 Page DZKit SERVICE MANUAL SIENNA HF REcEIVER/Transceiver...
  • Page 2 You can obtain parts directly from DZ Company by writing us, emailing us or telephoning us. And we’ll pay shipping charges to get those parts to you—anywhere in the world.
  • Page 3: Table Of Contents

    Page 3 Service Manual for the TABLE OF CONTENTS Sienna HF Transceiver Troubleshooting ....... 4 Voltage, Resistance Charts ....6 Specifications ......... 10 Theory of Operation ......11 Block Diagram ....... 33 Schematics ........34 DZ COMPANY LOVELAND, COLORADO Copyright © 2011 The DZ Company., LLC...
  • Page 4: Troubleshooting

    Page 4 TROUBLESHOOTING The nice thing about building your own transceiver is being able to  fix it if it breaks, or to figure out why it’s not working quite right  as you turn it on for the first time, WITHOUT having to send it back  to us for repair. But we have found that many people lack basic trou‐ bleshooting skills. So here are a few tips to help you narrow down a  problem:    1. Start by measuring the main DC voltages on every board. Is the 5V  supply really 5V? Most logic circuits can tolerate a range of 4.75  to 5.25V. If it’s less than 4.75, look into the cause — disconnect  all boards from the DCD board’s power connectors and measure the  voltage there. Is it OK? If it is, plug the other boards in one at  a time to see which one is affecting the voltage. If not, trouble‐ shoot just the DCD board.  2. Isolate the problem to a board, and then to a section of that  board. For example, is the receiver working but not the transmit‐ ter? Since the receiver uses the same low pass filters as the  transmitter, and they are located on the transmitter board, you can  rule out one whole section of the transmitter board (all the low  pass filter toroids and associated relays).  3. Figure out what it can’t be, to help you understand what it can be.  For example, if plugging in the transmitter makes the receiver quit  working, it could be that the transmitter is loading down the  shared 8‐bit data bus. Or perhaps it is drawing too much power and  causing the voltage to drop too low. Measure DC voltages first, to  make sure that the circuits you suspect are bad are getting power.  4. Replace unknown signals with known good ones. For example, if the  receiver doesn’t work, is a signal making it all the way from the  antenna jack through the antenna switch on the DCD board through  the SWR meter circuit, through the tuner, through the low pass fil‐ ters on the transmitter, through the T/R switch, through the band‐ pass filters and preamps on the RXBPF board and all the way to the  RF input jack on the receiver board? Lots of circuits there! Try  disconnecting the normal RF input and connect the antenna input or  any other source of RF directly to the receiver board. Because Si‐ enna has a lot of cable interconnects, you have great flexibility  in separating one circuit from another. ...
  • Page 5 Page 5 Symptom  Possible Causes  Fix  5v Supply reads low,  C24 on DCD board  Make sure C24 is  front panel seems  mounted the right di‐ locked up  rection, resolder it.  DCD Tray gets very hot  Normal without cover  Attach top cover. The  on  extra heatsinking and  fans will keep the  tray cool  Antenna A/B relays  Unsoldered pins  Remove DCD board and  don’t switch  check solder connec‐ tions on all relays  Transmitter does not  TXPVCC signal inopera‐ Make sure there is no  transmit  tive  voltage on the TxIn‐ hibit input on the  Linear interface con‐ nector. Check Q13 base  (should read 9.1V).  Check R68, D18, R4,  R5, Q16. Make sure  LPTT goes low during  transmit (gate of  Q16). Check continuity  through low pass fil‐...
  • Page 6: Voltage, Resistance Charts

    Page 6 VOLTAGE, RESISTANCE CHARTS Table 1. DC Voltages on DCD/Tuner Board  Measurement point  Voltage  J10 pin 1  5.0V +/‐.15V  J10 pin 2  ‐9.5V +/‐.5V  J10 pins 3 and 5  0.0V +/‐.05V (ground)  J10 pin 4  Applied voltage (11‐15V)  Anode (unbanded side) of D7  0.25 * applied voltage  Cathode (banded side) of D9 and D5  2.7V  Junction of R24 and R25  0.17 * applied voltage ...
  • Page 7 Page 7 Table 2. DC Voltages on Receiver Board  Pin  Voltage (+/‐5%)  J5 pin 1  +5.0V  J5 pin 2  ‐9.5V  J5 pin 4  +11 to +15V  J13 pin 4  9.0V  TP3  >4.0V  U14 pin 1  ‐5.0V  U13 pin 3  +5.0V  U18 pin 14  +11 to +15V  U19 pin 14  +11 to +15V  U4 pin 8  +4.5V  U4 pin 4  ‐9.0V  U22 pin 8  +5.0V  Q5 gate 1  +2.0V  Q5 source  +1.9V  Q5 drain  +7.6V  Q20 gate 1  +2.0V  Q20 source  +1.9V  Q20 drain  +7.7V ...
  • Page 8 Page 8 Table 3. DC Voltages on Transmitter Board  Menu  Pin  Voltage  Mode  Mode Commands  setting  J18 pin 1 (right)  5.0V           J5 pin 5 (bottom)  VCC           U18 pin 3 (top)  10.0V           CWUSB,  Test Point: CWFM  9.5V  CWLSB, FM  md3; md7; md4;     AM, USB,  md5; md2; md1;  LSB, DIGUSB,     9.5V  DIGLSB  md6; md9;     AM, USB,  md5; md2; md1;  LSB, DIGUSB, ...
  • Page 9 Page 9 Pin  Voltage  Mode  Mode Commands  Transmitter  JP7 (left)  1.4V  keyed     Transmitter  Q3 base (left pin)  1.2V  keyed     Transmitter  Q3 emitter (right pin)  0.4V  keyed     Q3 collector (center pin)  VCC        CWUSB, CWLSB,  FM  Transmitter  R21, C9 or C133 (top)  9.5V  keyed  md3; md7; md4;  Q4 collector  (center pin on 2SC1969)  VCC        Q5 collector  (center pin on 2SC1969)  VCC    ...
  • Page 10: Specifications

    Page 10 Specifications Frequency range: 10 kHz to 30 MHz (Specs valid 500 kHz-30 MHz) Modes: SSB, CW, AM, FM, (Digital via optional embedded PC) FM modulation: frequency modulated carrier with pre-emphasis, selectable deviation (2.5, 4, 5kHz) FM receive IF: 455kHz, includes two ECS LTM455DU 4-pole +/-10KHz ceramic filters (can be replaced with filters as narrow as +/-3KHz) Sensitivity: 0.4uV for 10dB S/N (preamps off, PSB off)
  • Page 11: Theory Of Operation

    Kit rigs sometimes fail to do some basic power conditioning on the input, making them failure- prone. The Sienna includes over- and under-voltage protection, over-current protection (fuses), and reverse polarity protection. In addition, the internal DC voltages of +5V, +9V and –9V are derived from regulators which have additional input and output protection circuitry.
  • Page 12 Page 12 motive relay, to open, which removes power. When the comparator outputs are both high, pul- lup resistor R14 assures that Q2 will be on, enabling the relay to turn on. The relay cannot actu- ally turn on unless the on/off switch is pushed because one side of the relay coil is routed through the switch to DC power.
  • Page 13 Page 13 raw input voltage on the audio output amplifiers in order to allow them to handle the very high instantaneous currents (up to an amp!) needed for good speech reproduction. Antenna switch, SWR meter The DCD board also has an antenna A/B switch and an SWR meter on it (see sheet 2 of 3 on the DCD/Tuner schematic).
  • Page 14 Page 14 Control: Controller, Front Panel and VFD Boards The main Controller board is the heart of the Sienna. An Atmel Mega644P microcontroller (U9) running at a clock frequency of 16MHz provides the main control functions, and a second Mega644P (U30) is used for Keyer, VOX/AntiVOX detection, microphone sampling in FM, keypad detection and meter backlight functions.
  • Page 15 Page 15 user (the mic’s /PTT) or when the Keyer is controlling it. An output port bit, PTTO, or the Keyer, via PTT_Keyer, are used to generate LTxEn, which is fed to the 10W transmitter as well as the 100W amplifier (Sheet 7). The Keyer microprocessor also controls when the receiver is enabled, through the signal HRcvEn.
  • Page 16 Sheets 8 through 11 show the DDS chips, bandpass filters on each output, and buffer amplifiers. Normally, DDS chips only require low pass filters on their outputs. Sienna uses bandpass filters so as to provide a much more constant impedance across the frequencies they must output, which helps to keep the level constant without the need for complex AGC circuitry.
  • Page 17 Page 17 Note that a similar switch is not needed for the RXVFO, because it operates at a much higher frequency range of 70-100MHz. Any harmonics of 70MHz fall well outside the upper cutoff of the Butterworth bandpass filter (105MHz). LED Backlight Sheet 7 shows backlighting circuitry for the meters.
  • Page 18 Page 18 The dot paddle and dash paddle inputs are filtered and fed to two edge-driven interrupt lines (port D, bits 2 and 3). The manual key input is fed to bit 0, where it is sampled continuously in the 1ms interrupt routine. Outputs from the Keyer are the PTT_Keyer line, which is routed to the controller to allow the Keyer to control the PTT line, and the Key line, which is routed to the transmitter.
  • Page 19 Page 19 (U20/U21 on Sheet 8 of the RXBPF board) is allocated as a bypass. This circuit represents the DZKit exclusive Passive Signal Boost (PSB) . By skipping the BPFs, any associated front-end loss is eliminated at the expense of a potential increase in intermod, and an increase in the noise floor, since more spectrum is allowed in.
  • Page 20 Page 20 Receiver second IF The 70MHz 1st IF output of the Darlington driver feeds U8, another TUF-3 mixer, along with LO2 from the controller set to 61.455Mhz (+/-, depending on filters in use and desired side- band). The difference product of about 9MHz is used for the 2nd IF, allowing a wide variety of Inrad crystal filters to be used.
  • Page 21 Page 21 tweaked so that the loss through the IF Filter board is about the same regardless of the loss characteristics of the various filters. The crystal filters have various input/output impedances. The Inrad 2311 is about 400 ohms, whereas the others are 200 ohms, so an additional matching transformer is required as well as a different value pad.
  • Page 22 AGC to 7V whenever the PTT line is active. This is done in the firmware. However, the Sienna also has a full duplex mode, in which the Receiver is meant to be left on during transmission. This is commonly used when operating satellites. Since external transverters are often used for this, the transmit and receive frequencies are different, and there is less chance for transmitter bleed-through into the receiver.
  • Page 23 Page 23 This is one thing that enables high speed QSK (full break-in) operation. There’s one other thing that must be done during non-full-duplex transmit. The receiver cannot help but pick up a little of the transmitted signal, and we do not usually want to hear that in the speakers.
  • Page 24 Page 24 ers. However it can cause the receiver to have higher pitch than may be comfortable. The solu- tion is to mute the receiver and use the line out to the internal or external PC sound card, and to run the audio through a DSP such as SiliconPixels’...
  • Page 25 Page 25 a calculated value and depends on the meter function that is selected (SWR, Forward Power, PA Volts, etc.).
  • Page 26 Refer to the block diagram on page xxx and schematics starting on page xxx. The transmitter in the Sienna is completely separate from the receiver. They do not share local oscillators or bandpass filters as is the case in most transceivers. This allows the transmitter and receiver to be operated at the same time, i.e.
  • Page 27 Page 27 off. In FM mode, the key is turned on and TXBFO is frequency modulated based on the amplitude of the sampled microphone input. SSB/AM filtering The transformer-coupled (T6) DSB signal from U7 (107A and 107B) is applied to two 7- element variable bandwidth Cohn-style crystal filters, one for SSB use, with a 2.5 kHz band- width, and one for AM use, with a 5 kHz bandwidth.
  • Page 28 Page 28 is identical to the ones used on the RXBPF board for the receiver discussed earlier. The only difference is that the TXBPF board selects the band based on 4 bits of band data from U1 (Sheet 8). This band data is compatible with that used by Yaesu’s linear amplifiers. Voltage Controlled Amplifier, ALC The bandpass filtered signal from J13 is next fed into another NXP SA603 voltage controlled amplifier (U8).
  • Page 29 Page 29 T/R switch and low pass filters The 10W output from T5 is fed into one of five low pass filters shown on Sheet 7. If the 100W amplifier is not installed, the bandpass filters are also tapped at the 10W signal point and fed through a transmit/receive PIN diode switch network consisting of diodes D3 and D7, chokes RFC1 and RFC2, and output coupling capacitors C80 and C113.
  • Page 30 Page 30 Amp bypass Sheet 2 is the heart of the 100W amplifier. A 10 Watt input signal can either be fed to the am- plifier or it can be switched directly to the T/R switch via relays K1 and K2. If the amp is by- passed, the BON signal (derived from the PAON bit before the relay driver on Sheet 1) will stay low, assuring that the amplifier is biased off by U3/Q7.
  • Page 31 Page 31 in the secondary is thus about 3 Amps rms. Stability filter and T/R switch RF appearing at K3 is routed to a high pass filter consisting of toroids L14 and L15 and capaci- tor C70. with a breakpoint at about 1.5MHz. Thus the amplifier cannot be used at full power below this frequency.
  • Page 32 Page 32...
  • Page 33: Block Diagram

    Page 33 Insert block diagram page here...
  • Page 34: Schematics

    Page 34 Schematics...
  • Page 35 Page 35...
  • Page 36 Page 36...
  • Page 37 Page 37...
  • Page 38 Page 38...
  • Page 39 Page 39...
  • Page 40 Page 40...
  • Page 41 Page 41...
  • Page 42 Page 42...
  • Page 43 Page 43...
  • Page 44 Page 44...
  • Page 45 Page 45...
  • Page 46 Page 46...
  • Page 47 Page 47...
  • Page 48 Page 48...
  • Page 49 Page 49...
  • Page 50 Page 50...
  • Page 51 Page 51...
  • Page 52 Page 52...
  • Page 53 Page 53...
  • Page 54 Page 54...
  • Page 55 Page 55...
  • Page 56 Page 56...
  • Page 57 Page 57...
  • Page 58 Page 58...
  • Page 59 Page 59...
  • Page 60 Page 60...
  • Page 61 Page 61...
  • Page 62 Page 62...
  • Page 63 Page 63...
  • Page 64 Page 64...
  • Page 65 Page 65...
  • Page 66 Page 66...
  • Page 67 Page 67...
  • Page 68 Page 68...
  • Page 69 Page 69...
  • Page 70 Page 70...
  • Page 71 Page 71...
  • Page 72 Page 72...
  • Page 73 Page 73...
  • Page 74 Page 74...
  • Page 75 Page 75...
  • Page 76 Page 76...
  • Page 77 Page 77...
  • Page 78 Page 78...
  • Page 79 Page 79...
  • Page 80 Page 80...
  • Page 81 Page 81...
  • Page 82 Page 82...
  • Page 83 Page 83...
  • Page 84 Page 84...
  • Page 85 Page 85...
  • Page 86 Page 86...
  • Page 87 Page 87...
  • Page 88 Page 88...
  • Page 89 Page 89...
  • Page 90 Page 90...
  • Page 91 Page 91...
  • Page 92 Page 92...
  • Page 93 Page 93...
  • Page 94 Page 94...
  • Page 95 Page 95...
  • Page 96 Page 96...
  • Page 97 Page 97...
  • Page 98 Page 98 DZ COMPANY LOVELAND, COLORADO UNIQUE electronic equipment in kit form...