RoHS 3 compliant using exemption 6c. Further note that Apogee Instruments does not specifically run any analysis on our raw materials or end products for the presence of these substances, but rely on the information provided to us by our material suppliers.
(transmitted) PPFD measurement in the same environments. Apogee Instruments SQ series quantum sensors consist of a cast acrylic diffuser (filter), photodiode, and signal processing circuitry mounted in an anodized aluminum housing, and a cable to connect the sensor to a measurement device.
SENSOR MODELS This manual covers the amplified voltage output quantum sensor, model SQ-514 (listed in bold below). Additional models are covered in their respective manuals. Model Signal SQ-514 4-20 mA SQ-500 Self-powered SQ-512 0-2.5 V SQ-515 0-5 V SQ-520 SQ-521...
(316), M8 connector Calibration Traceability Apogee Instruments SQ-500 series quantum sensors are calibrated through side-by-side comparison to the mean of four transfer standard quantum sensors under a reference lamp. The reference quantum sensors are...
Page 7
Spectral Response Mean spectral response measurements of six replicate Apogee SQ-100 (original) and SQ-500 (full-spectrum) series quantum sensors. Spectral response measurements were made at 10 nm increments across a wavelength range of 300 to 800 nm with a monochromator and an attached electric light source.
Page 8
Cosine Response Directional (cosine) response is defined as the measurement error at a specific angle of radiation incidence. Error for Apogee SQ-500 series quantum sensors is approximately ± 2 % and ± 5 % at solar zenith angles of 45° and 75°, respectively.
Mount the sensor to a solid surface with the nylon mounting screw provided. To accurately measure PPFD incident on a horizontal surface, the sensor must be level. An Apogee Instruments model AL-100 leveling plate is recommended for this purpose. To facilitate mounting on a cross arm, an Apogee Instruments model AL-120 mounting bracket is recommended.
CABLE CONNECTORS Apogee started offering cable connectors on some bare-lead sensors in March 2018 to simplify the process of removing sensors from weather stations for calibration (the entire cable does not have to be removed from the station and shipped with the sensor).
Black: Ground (for sensor signal and input power) Clear: Shield/Ground Sensor Calibration Apogee SQ-514 sensors have a standard PPFD calibration factor of exactly: 250.0 µmol m per mA Multiply this calibration factor by the measured mA signal to convert to PPFD in units of µmol m Calibration Factor (250 µmol m...
Page 12
Spectral Error The combination of diffuser transmittance, interference filter transmittance, and photodetector sensitivity yields spectral response of a quantum sensor. A perfect photodetector/filter/diffuser combination would exactly match the defined plant photosynthetic response to photons (equal weighting to all photons between 400 and 700 nm, no weighting of photons outside this range), but this is challenging in practice.
Page 13
Yield Photon Flux Density (YPFD) Measurements Photosynthesis in plants does not respond equally to all photons. Relative quantum yield (plant photosynthetic efficiency) is dependent on wavelength (green line in figure below) (McCree, 1972a; Inada, 1976). This is due to the combination of spectral absorptivity of plant leaves (absorptivity is higher for blue and red photons than green photons) and absorption by non-photosynthetic pigments.
Page 14
Correlation between photosynthetic photon flux density (PPFD) and yield photon flux density (YPFD) for multiple different radiation sources. YPFD is approximately 90 % of PPFD. Measurements were made with a spectroradiometer (Apogee Instruments model PS-200) and weighting factors shown in the previous figure were used to calculate PPFD and YPFD.
Page 15
Immersion Effect Correction Factor When a radiation sensor is submerged in water, more of the incident radiation is backscattered out of the diffuser than when the sensor is in air (Smith, 1969; Tyler and Smith, 1970). This phenomenon is caused by the difference in the refractive index for air (1.00) and water (1.33), and is called the immersion effect.
3. Salt deposit accumulation from evaporation of sea spray or sprinkler irrigation water. Apogee Instruments upward-looking sensors have a domed diffuser and housing for improved self-cleaning from rainfall, but active cleaning may be necessary. Dust or organic deposits are best removed using water, or window cleaner, and a soft cloth or cotton swab.
Page 17
Homepage of the Clear Sky Calculator. Two calculators are available: one for quantum sensors (PPFD) and one for pyranometers (total shortwave radiation). Clear Sky Calculator for quantum sensors. Site data are input in blue cells in middle of page and an estimate of PPFD is returned on right-hand side of page.
Independent Verification of Functionality Apogee SQ-514 series quantum sensors provide a 4-20 mA output that is proportional to incident PPFD. A quick and easy check of sensor functionality can be determined using a DC power supply and an ammeter. Power the sensor with a DC voltage by connecting the positive voltage signal to the red wire from the sensor and the negative (or common) to the black wire from the sensor.
RETURN AND WARRANTY POLICY RETURN POLICY Apogee Instruments will accept returns within 30 days of purchase as long as the product is in new condition (to be determined by Apogee). Returns are subject to a 10 % restocking fee. WARRANTY POLICY...
Page 20
84321, USA 5. Upon receipt, Apogee Instruments will determine the cause of failure. If the product is found to be defective in terms of operation to the published specifications due to a failure of product materials or craftsmanship, Apogee Instruments will repair or replace the items free of charge.
Need help?
Do you have a question about the SQ-514 and is the answer not in the manual?
Questions and answers