Orion SkyQuest IntelliScope XT10 Instruction Manual page 14

Dobsonian telescope
Hide thumbs Also See for SkyQuest IntelliScope XT10:
Table of Contents

Advertisement

When the secondary mirror is centered in the focuser draw-
tube, rotate the secondary mirror holder until the reflection of
the primary mirror is as centered in the secondary mirror as
possible. It may not be perfectly centered, but that is OK. Now
tighten the three small alignment screws equally to secure
the secondary mirror in that position.
If the entire primary mirror reflection is not visible in the sec-
ondary mirror, as in Figure 18c, you will need to adjust the tilt
of the secondary mirror. This is done by alternately loosen-
ing one of the three alignment hex screws while tightening
the other two, as depicted in Figure 21. Do not make exces-
sive turns of these hex screws or force them past their normal
travel. A simple 1/2 turn of the screw can dramatically change
the tilt of the mirror. The goal is to center the primary mir-
ror reflection in the secondary mirror, as in Figure 18d. Don't
worry that the reflection of the secondary mirror (the smallest
circle, with the collimation cap "dot" in the center) is off-center.
You will fix that in the next step.
adjusting the Primary Mirror
The final adjustment is made to the primary mirror. It will need
adjustment if, as in Figure 18d, the secondary mirror is cen-
tered under the focuser and the reflection of the primary mirror
is centered in the secondary mirror, but the small reflection of
the secondary mirror (with the "dot" of the collimation cap) is
off-center.
The tilt of the primary mirror is adjusted with three spring-
loaded collimation thumbscrews on the back end of the
optical tube (bottom of the primary mirror cell); these are the
larger thumbscrews. The three smaller thumbscrews lock the
mirror's position in place. These thumbscrews must be loos-
ened before any collimation adjustments can be made to the
primary mirror.
To start, turn the smaller thumbscrews counterclockwise a
few turns each (Figure 22). Use a screwdriver in the slots, if
necessary.
Figure 22.
The three small thumbscrews that lock the primary
mirror in place must first be loosened before any adjustments can
be made.
14
Now, try tightening or loosening one of the larger collima-
tion thumbscrews with your fingers (Figure 23). Look into the
focuser and see if the secondary mirror reflection has moved
closer to the center of the primary. You can tell this easily with
the collimation cap and mirror center mark by simply watch-
ing to see if the "dot" of the collimation cap is moving closer
or further away from the "ring" on the center of the primary
mirror. If turning that one thumbscrew does not seem to be
bringing you closer to collimation, try using one of the other
collimation thumbscrews. It will take some trial and error using
all three thumbscrews to adjust the telescope properly. Over
time you will get the feel for which collimation screws to turn
to move the image in a given direction.
Figure 23.
The tilt of the primary mirror is adjusted by turning
one or more of the three larger thumbscrews.
When you have the dot centered as much as is possible in the
ring, your primary mirror is collimated. The view through the
collimation cap should resemble Figure 18e. Re-tighten the
locking thumbscrews.
A simple star test will tell you whether the optics are accu-
rately collimated.
Star-testing the telescope
When it is dark, point the telescope at a bright star high in
the sky and center it in the eyepiece's field of view. Slowly
defocus the image with the focusing knob. If the telescope is
correctly collimated, the expanding disk should be a perfect
circle (Figure 24). If the image is unsymmetrical, the scope
is out of collimation. The dark shadow cast by the secondary
mirror should appear in the very center of the out-of-focus
circle, like the hole in a doughnut. If the "hole" appears off-
center, the telescope is out of collimation.
If you try the star test and the bright star you have selected
is not accurately centered in the eyepiece, then the optics will
always appear out of collimation, even though they may be per-
fectly aligned. It is critical to keep the star centered, so over
time you will need to make slight corrections to the telescope's
position in order to account for the sky's apparent motion.

Advertisement

Table of Contents
loading

Table of Contents