Sign In
Upload
Manuals
Brands
Bruker BioSpin Manuals
Measuring Instruments
Solid State NMR
Bruker BioSpin Solid State NMR Manuals
Manuals and User Guides for Bruker BioSpin Solid State NMR. We have
1
Bruker BioSpin Solid State NMR manual available for free PDF download: User Manual
Bruker BioSpin Solid State NMR User Manual (328 pages)
NMR Spectroscopy
Brand:
Bruker BioSpin
| Category:
Measuring Instruments
| Size: 8 MB
Table of Contents
Table of Contents
3
Contents
3
1 Introduction
9
Disclaimer
10
Safety Issues
10
Contact for Additional Technical Assistance
10
2 Test Samples
11
Test Samples
12
Test Samples
13
Table 2.1. Setup Samples for Different NMR Sensitive Nuclei
13
3 General Hardware Setup
15
Connections to the Preamplifier
15
Figure 3.1. All Connections to the Back of the Preamplifier
16
General Hardware Setup
16
Figure 3.2. Transmitter Cables (Only) Wired to Back of the Preamplifier
17
Figure 3.3. the Edasp Setpreamp Display
18
Figure 3.4. Additional Connections to the Preamplifier Stack
19
RF Connections between Preamplifier and Probe
20
Figure 3.5. Matching Box Setup for High Power X-BB Preamplifiers
20
RF-Filters in the RF Pathway
21
Figure 3.6. Standard Double Resonance CP Experiment, Bypassing the Proton Preamp
22
Figure 3.7. Standard CP Experiment, Proton Preamp in Line
22
Figure 3.8. Triple Resonance Experiment, Without X-Y Decoupling
23
Figure 3.9. Triple Resonance Experiment, with X-Y Decoupling
23
Figure 3.10. Triple Resonance 1H/19F-Experiment
24
Figure 3.11. 19F/1H Combiner/Filter Set
24
Connections for Probe Identification and Spin Detection
25
Figure 3.12. Quadruple Resonance HFXY Experiment (WB Probes ≥ 400 Mhz Only!)
25
Figure 3.13. PICS Probe Connector and Spin Rate Monitor Cable on a WB Probe
25
MAS Tubing Connections
26
Figure 3.14. Spin Rate Monitor Cable Connector for 2 Different Types of SB Probes
26
Connections
27
Wide Bore (WB) Magnet Probes
28
Figure 3.15. WB DVT Probe MAS Tubing Connections
28
Figure 3.16. VTN Probe MAS Tubing Connections Note: WVT Probes Are VTN-Type Probes
28
Figure 3.17. WB Probes: Eject/Insert Connections
29
Figure 3.18. WB Probes: DVT, Probe Connections for RT and HT Measurements
29
Standard Bore (SB) Magnet Probes
30
Figure 3.19. SB VTN Probe MAS Connections
30
Additional Connections for VT Operation
31
Figure 3.20. SB DVT Probe MAS Connections
31
Figure 3.21. WB Probe MAS VTN and WVT, and DVT Probe Connections
32
Figure 3.22. WB Probe MAS DVT Connections
33
Figure 3.23. SB Probe MAS VTN
34
Figure 3.24. SB Probe MAS DVT Connections
34
Figure 3.25. WB Wideline or PE Probes
35
Figure 3.26. WB Wideline or PE Probe Connections
35
Figure 3.27. Low Temperature Heat Exchanger for VTN Probes (Old Style)
36
Figure 3.28. Low Temperature Heat Exchanger for DVT Probes
37
Figure 3.29. Low Temperature Liquid N2 Dewar with DVT Probe/Heat Exchanger
38
Figure 3.30. Bottom View of Low Temperature DVT Probe/Heat Exchanger
39
Figure 3.31. Low Temperature Setup with B-CU X (or B-CU 05)
40
Probe Setup, Operations, Probe Modifiers
41
Setting the Frequency Range of a Wideline (Single Frequency) Probe
41
Figure 3.32. Low Temperature Setup with B-CU X
41
Shifting the Probe Tuning Range
42
Figure 3.33. RF Setup of a Wideline Single Frequency Probe
42
Figure 3.34. Possible Modifiers for Probe Tuning Ranges (400 Mhz and up Only)
44
Figure 3.35. Λ/4 (Low Range) and Λ/2 Mode (High Range), 400 Mhz Probe
45
Figure 3.36. a Λ/4 Only Probe (Left) and a Λ/4 - Λ/2 Probe (Right)
46
Figure 3.37. Without/With Parallel Capacitance to Shift the Tuning Range to Lower Frequency
47
Adding a Frequency Channel to a Probe (WB Probes Only)
48
Figure 3.38. Parallel Coil to Shift the Tuning Range to Higher Frequency
48
Figure 3.39. Mounting a Triple Insert into a Triple Probe
49
Mounting the Probe in the Magnet/Shim Stack
50
EDASP Display: Software Controlled Routing
51
Figure 3.40. Example of a 600 WB NMR Instrument Site
51
Figure 3.41. Short Display, Pulse Routing Only for C/N/H DCP or REDOR Experiment, Observing
52
Figure 3.42. Long Display, Pulse and Receiver Routing
53
Figure 3.43. Pulse on F2, Observe on F1 - Routing
54
Figure 3.44. the Edasp Display for a System with Two Receiver Channels
54
4 Basic Setup Procedures
55
General Remarks
56
Setting the Magic Angle on Kbr
57
RF-Routing
57
Figure 4.1. Routing for a Simple One Channel Experiment
57
Setting Acquisition Parameters
59
Figure 4.2. Probe Connections to the Preamplifier
59
Figure 4.3. Pop-Up Window for a New Experiment
60
Figure 4.4. Ased Table with Acquisition Parameters for the Kbr Experiment
61
Figure 4.5. Graphical Pulse Program Display
62
Figure 4.6. Display Example of a Well-Tuned Probe
63
Figure 4.7. Display Example of an Off-Matched and Off-Tuned Probe
64
Figure 4.8. Display Example Where Probe Is Tuned to a Different Frequency
64
Calibrating 1H Pulses on Adamantane
65
Figure 4.9. FID and Spectrum of the 79Br Signal of Kbr Used to Adjust the Magic Angle
65
Figure 4.10. Routing for a Double Resonance Experiment Using High Power Stage for H and X-Nu
66
Figure 4.11. Routing for a Double Resonance Experiment, Changed for Proton Observation
67
Figure 4.12. Proton Spectrum of Adamantane at Moderate Spin Speed
68
Figure 4.13. Setting the Carrier on Resonance
69
Figure 4.14. Expanding the Region of Interest
70
Figure 4.15. Save Display Region to Menu
70
Figure 4.16. the Popt Window
71
Figure 4.17. the Popt Display after Proton P1 Optimization
72
Calibrating 13C Pulses on Adamantane and Shimming the Probe
73
Figure 4.18. Adamantane 13C FID with 50 Msec Aq. Setsh Display
74
Figure 4.19. Adamantane 13C FID with 50 Msec Aq. Setsh with Optimized Z-Shim Value
74
Calibrating Chemical Shifts on Adamantane
75
Setting up for Cross Polarization on Adamantane
76
Figure 4.20. a Cp Pulse Sequence
76
Figure 4.21. Hartmann-Hahn Optimization Profile
77
Figure 4.22. Hartmann-Hahn Optimization Profile Using a Square Proton Contact Pulse
78
Cross Polarization Setup and Optimization for a Real Solid: Glycine
79
Figure 4.23. Display Showing Α-Glycine Taken under Adamantane Conditions, 4 Scans
79
Figure 4.24. Optimization of the Decoupler Offset O2 at Moderate Power, Using Cw Decoupling
80
Figure 4.25. Glycine with Cw Decoupling at 90 Khz RF Field
81
Figure 4.26. Glycine Spectrum with Spinal64 Decoupling at 93 Khz RF Field
83
Table 4.2. Processing Parameters for the Glycine S/N-Test
83
Some Practical Hints for CPMAS Spectroscopy
85
Table 4.3. Reasonable RF-Fields for Max. 2% Duty Cycle
85
Field Setting and Shift Calibration
87
Literature
88
5 Decoupling Techniques
89
Heteronuclear Decoupling
89
CW Decoupling
89
TPPM Decoupling
90
Figure 5.1. Optimization of TPPM Decoupling, on Glycine at Natural Abundance
90
SPINAL Decoupling
91
Swept-Frequency-TPPM
91
Decoupling
91
Pi-Pulse Decoupling
91
Homonuclear Decoupling
92
Multiple Pulse NMR: Observing Chemical Shifts of Homonuclear Coupled Nuclei
92
Multiple Pulse Decoupling
92
Br-24, Mrev-8, Blew-12
92
FSLG Decoupling
92
Figure 5.2. Geometry for the FSLG Condition
93
Figure 5.3. FSLG Decoupling Pulse Sequence Diagram
94
Figure 5.4. Adamantane, FSLG-Decoupled, Showing the (Downscaled) C-H J-Couplings
94
Table 5.1. Acquisition Parameters
95
Figure 5.5. Shape with Phase Gradients
96
Table 5.2. Processing Parameters
96
Table 7.1. Acquisition Parameters
96
Dumbo
97
Transverse Dephasing Optimized Spectroscopy
98
Figure 5.6. Pulse Program for Hahn Echo Sequence
98
6 Practical CP/MAS Spectroscopy on Spin 1/2 Nuclei
99
Possible Difficulties
99
Possible Approaches for 13C Samples
99
Possible Approaches for Non-13C Samples
101
Table 6.1. Power Conversion Table
101
Hints, Tricks, Caveats for Multi-Nuclear (CP-)MAS Spectroscopy
102
Setup for Standard Heteronuclear Samples 15N, 29SI, 31P
102
7 Basic CP-MAS Experiments
105
Pulse Calibration with CP
105
Figure 7.1. Pulse Program for CP with Flip-Back Pulse
105
Total Sideband Suppression TOSS
106
Table 7.2. Acquisition Parameters
106
Figure 7.2. Pulse Program for CPTOSS
107
Table 7.3. Acquisition Parameters
107
Figure 7.3. Comparison of a CPTOSS and CPMAS Experiment
108
Figure 7.4. CPTOSS243 Experiment on Tyrosine Hcl at 6.5 Khz
109
Seltics
110
Figure 7.5. CPTOSS Experiment on Tyrosine Hcl at 6.5 Khz
110
Figure 7.6. Pulse Program for SELTICS
111
Figure 7.7. SELTICS at 6.5 Khz Sample Rotation on Tyrosine Hcl
111
Figure 7.8. Cholesterylacetate Spectrum Using Sideband Suppression
112
Non-Quaternary Suppression (NQS)
113
Figure 7.9. Block Diagram of the Non-Quaternary Suppression Experiment
113
Table 10.1. Acquisition Parameters
113
Figure 7.10. Glycine 13C CPMAS NQS Experiment with a Dephasing Delay
114
Figure 7.11. Tyrosine 13C CPMAS NQS Experiment with TOSS
115
Spectral Editing Sequences: CPPI, CPPISPI and CPPIRCP
116
Figure 7.12. Block Diagram of the CPPI Experiment
116
Figure 7.13. CPMAS Spectrum of Tyrosine.hcl at 6.5 Khz
117
8 Fslg-Hetcor
119
Pulse Sequence Diagram for FSLG HETCOR
120
Figure 8.1. the FSLG Hetcor Experiment
120
Setting up FSLG HETCOR
121
Figure 8.2. the "12
121
Figure 8.3. the Ased Display
122
Table 8.2. Processing Parameters for FSLG-HETCOR (on Tyrosine-Hcl)
124
Results
125
Figure 8.4. FSLG Hetcor Spectrum Tyrosine Hcl
125
Figure 8.5. FSLG Hetcor Spectrum Tyrosine Hcl
126
9 Modifications of FSLG HETCOR
127
Carbon Decoupling During Evolution
128
Figure 9.1. Comparison of HETCOR with and Without 13C-Decoupling
128
HETCOR with DUMBO, PMLG or W-PMLG, Using Shapes
129
The Sequence Pmlghet
129
Figure 9.2. HETCOR Using Windowless Phase Ramps
130
Table 9.1. Acquisition Parameters for Pmlg-HETCOR (on Tyrosine-Hcl)
130
W-Pmlghet
132
Table 9.3. Acquisition Parameters for Wpmlg-HETCOR (on Tyrosine-Hcl)
132
Edumbohet
133
Dumbohet
134
Table 9.4. Acquisition Parameters for E-DUMBO-HETCOR (on Tyrosine-Hcl)
134
Table 9.5. Acquisition Parameters for DUMBO-HETCOR (on Tyrosine-Hcl)
134
HETCOR with Cross Polarization under LG Offset
135
Figure 9.3. HETCOR on Tyrosine *Hcl Without (Left) and with LG Contact (1Msec Contact)
136
10 Rfdr
137
Experiment
138
Set-Up
138
Figure 10.1. RFDR Pulse Sequence for 2D CPMAS Exchange Experiment
138
Data Acquisition
139
Set-Up 2D Experiment
139
Figure 10.2. the "123" Icon in the Menu Bar of the Data Windows Acquisition Parameter Page
139
Spectral Processing
141
Figure 10.3. 13C Histidine Signal Decay as a Function of the RFDR Mixing Time
141
Figure 10.4. 2D RFDR Spectrum of 13C Fully Labelled Histidine (RFDR Mixing Time 1.85 Ms)
142
BRUKER BIOSPIN User Manual Version
142
11 Proton Driven Spin Diffusion (PDSD)
143
Pulse Sequence Diagram
145
Basic Setup
145
Figure 11.1. CPSPINDIFF Pulse Sequence
145
2D Experiment Setup
146
Acquisition Parameters
147
Figure 11.2. the Acquisition Parameter Window (Eda)
147
Processing Parameters
149
Adjust the Rotational Resonance Condition for DARR/RAD
149
Table 10.2. Processing Parameters
149
Figure 11.3. POPT Result for the Cw Decoupling Power Variation
150
Example Spectra
151
Figure 11.4. 13C CPSPINDIFF of Fully Labeled Tyrosine*Hcl, Spinning at 22 Khz, 4.6 Msec MIX. Up- Per: PDSD, Lower: DARR
151
Figure 11.5. Comparison of DARR/PDSD
152
Figure 11.6. 13C DARR of Fully Labelled Ubiquitine Spinning at 13 Khz
153
12 Redor
155
Pulse Sequence
157
Setup
157
Figure 12.1. REDOR Pulse Sequence
157
Data Acquisition
159
Data Processing
160
Figure 12.2. 2D Data Set after "Xf2" Processing
160
Figure 12.3. T1/T2 Relaxation for Further Analysis of the Data Figure and the Analysis Interface
161
Figure 12.4. Saving Data to Continue to the Relaxation Window
161
Figure 12.5. Setting the Correct Analysis Parameter
162
Figure 12.6. Plot of the Normalized Signal Intensity Versus the Evolution Time
163
Figure 12.7. Experimental Data for the Glycine 13C{15N}-REDOR
164
Figure 12.8. Comparison of Experimental Data to a Simulation with Reduced Dipolar Coupling
165
Figure 12.9. Experimental Data with the Corresponding M2 Parabolic Analysis
166
Final Remarks
167
13 Super
169
Overview
169
Pulse Program
170
Experiment Setup
170
Figure 13.1. Pulse Sequence for 2D CPMAS Exchange Experiment
170
Setup 2D Experiment
171
Figure 13.2. the "123" Icon in the Menu Bar of the Data Windows Acquisition Parameter Page
171
Figure 13.3. the Acquisition Parameter Window (Eda)
172
Data Acquisition
173
Table 11.1. Acquisition Parameters
173
Spectral Processing
174
Figure 13.4. the SUPER Spectrum of Tyrosine Hcl after Processing Using "Xfb
175
Figure 13.5. SUPER Spectrum after Tilting the Spectrum Setting "1 Alpha" = -1
176
Figure 13.6. Various Cross Sections from the Upper 2D Experiment
177
14 Symmetry Based Recoupling
179
Pulse Sequence Diagram, Example C7
181
Setup
181
Figure 14.1. C7 SQ-DQ Correlation Experiment
181
Table 14.1. Recommended Probe/Spin Rates for Different Experiments and Magnetic Field
182
Spectrometer Setup for 13C
183
Setup for the Recoupling Experiment
183
Figure 14.2. Optimization of the RF Power Level for DQ Generation/Reconversion on Glycine
184
Figure 14.3. Variation of DQ-Generation/Reconversion Time on a Uniformly 13C Labeled Peptide
184
Setup of the 2D SQ-DQ Correlation Experiment
185
Figure 14.4. PC7 Recoupling Efficiency at a Spinning Speed of 13 Khz
185
Data Acquisition
186
Table 14.2. Acquisition Parameters for DQ-SQ Correlation Experiments Using Symmetry Based Re
186
Spectral Processing
188
13C Single Quantum Correlation with DQ Mixing
189
Figure 14.5. SC14 2D SQ-DQ Correlation on Tyrosine-Hcl
189
Data Acquisition
190
Spectral Processing
191
Figure 14.6. PC7 2D SQ-SQ Correlation on Tyrosine-Hcl
191
15 Pisema
193
Pulse Sequence Diagram
194
Figure 15.1. Pisema Pulse Sequence
194
Setup
195
Table 15.1. Acquisition Parameters
197
Processing
198
Table 15.2. Processing Parameters for the Pisema Experiment
198
Figure 15.2. PISEMA Spectrum of 15N Labeled Acetylated Valine and FID in T1 over 3.008 Ms 64 Data Points
199
Figure 15.3. PISEMA Spectrum of 15N Labeled Kdpf Transmembrane Protein
200
16 Relaxation Measurements
201
Describing Relaxation
201
T1 Relaxation Measurements
202
Experimental Methods
202
The CP Inversion Recovery Experiment
203
Figure 16.1. the CPX T1 Pulse Sequence
203
Data Processing
205
Table 16.2. Parameters for 2D Inversion Recovery Experiment
205
Table 16.3. Processing Parameters for CP T1 Relaxation Experiment
205
Figure 16.2. Relaxation of Alpha-Carbon Signal in Glycine
207
The Saturation Recovery Experiment
208
T1P Relaxation Measurements
209
Indirect Relaxation Measurements
210
Indirect Proton T1 Measurements
211
17 Basic MQ-MAS
213
Introduction
213
Pulse Sequences
213
Figure 17.1. a 3-Pulse Basic Sequence with Z-Filter
214
Figure 17.2. a 4-Pulse Basic Sequence with Z-Filter
214
Data Acquisition
215
Setting up the Experiment
215
Table 17.1. some Useful Samples for Half-Integer Spin Nuclei
216
Figure 17.3. Comparison of 87Rb MAS Spectra of Rbno3 Excited with Selective and Non-Selective
217
Figure 17.4. Nutation Profiles of Selective and Non-Selective Pulses
218
Figure 17.5. Example for Popt Set-Up for Optimization of P1 and P2
219
Table 17.2. Initial Parameters for Setup
219
Two Dimensional Data Acquisition
220
Figure 17.6. Signal Intensities of 87Rb Resonances in Rbno3 as Function of P1 and P2
220
Table 17.3. F1 Parameters for 2D Acquisition
220
Data Processing
222
Table 17.4. Processing Parameters for 2D FT
222
Figure 17.7. 2D 87Rb 3QMAS Spectrum of Rbno3
223
Figure 17.8. Comparison of Differently Processed 2D 23Na 3Q MAS Spectra of Na4P2O7
224
Obtaining Information from Spectra
225
Figure 17.9. Calculated Shift Positions Dmq
225
Table 17.5. Values of |R-P| for Various Spins I and Orders P
226
Table 17.6. Chemical Shift Ranges for All MQ Experiments for All Spins I
227
Figure 17.10. 17O MQMAS of Napo3 at 11.7 T (67.8 Mhz) on the Left and 18.8 T (108.4 Mhz) on the
228
Figure 17.11. Slices and Simulations of the 18.8 T 17O MQMAS of Napo3
229
Figure 17.12. Graphical Interpretation of the Spectrum from Figure 17.10
230
18 MQ-MAS: Sensitivity Enhancement
231
Split-T1 Experiments and Shifted Echo Acquisition
231
Figure 18.1. Hahn Echo Pulse Sequence and Coherence Transfer Pathway
232
Implementation of DFS into MQMAS Experiments
233
Optimization of the Double Frequency Sweep (DFS)
233
Figure 18.2. Processing of Hahn Echo. Left Is the Shifted Echo
233
Figure 18.3. Four Pulse Sequence and Coherence Transfer Pathway for the 3Q MAS Experiment
234
Figure 18.4. Three Pulse Sequence and Coherence Transfer Pathway
234
Table 18.1. Initial Parameters for the DFS Experiment
236
Figure 18.5. Example for Popt to Set-Up for Optimization of DFS
237
2D Data Acquisition
238
Figure 18.6. Signal Intensities of 87Rb in Rbno3
238
Table 18.2. Parameters for 2D Data Acquisition of 3-Pulse Shifted Echo Experiment Mp3Qdfs.av
239
Data Processing
240
Table 18.3. Parameters for 2D Data Acquisition of 4-Pulse Z-Filtered Experiment Mp3Qdfsz.av
240
Table 18.4. Processing Parameters
241
Fast Amplitude Modulation - FAM
242
Soft Pulse Added Mixing - SPAM
242
Table 18.5. Parameters for FAM
242
Figure 18.7. Pulse Sequence and Coherence Transfer Pathways for SPAM 3QMAS
243
Table 18.6. Further Parameters for 2D Data Acquisition of SPAM MQMAS Experiment
243
19 Stmas
245
Experimental Particularities and Prerequisites
245
Figure 19.1. Principle of 2D Data Sampling in STMAS Experiments
245
Pulse Sequences
247
Figure 19.2. Four-Pulse Sequence and Coherence Transfer Pathway for the Double Quantum Filtered STMAS Experiment with Z-Filter (Stmasdqfz.av)
247
Figure 19.3. Four Pulse Sequence and Coherence Transfer Pathway
248
Experiment Setup
249
Setting up the Experiment
249
Table 19.2. some Useful Samples for some Nuclei with Half Integer Spin
249
Table 19.3. Initial Parameters for the Set-Up of Stmasdfqz.av
250
Two Dimensional Data Acquisition
251
Table 19.4. Initial Parameters for the Set-Up of Stmasdfqe.av
251
Figure 19.4. 87Rb STMAS Spectra of Rbno3
252
Table 19.5. F1 Parameters for the 2D Data Acquisition
252
Data Processing
253
Table 19.6. Processing Parameters for the 2DFT
253
20 Double-CP
255
Pulse Sequence Diagram, Double CP (DCP)
256
Double CP Experiment Setup
256
Double CP 2D Experiment Setup
256
Figure 20.1. Pulse Sequence Diagram for 1D (T1=0) and 2D Double CP Experiments
256
Figure 20.2. the Edasp Routing Tables for H-C-N Double CP
257
Channel Setup
258
Figure 20.3. Routing Table for Triple Resonance Setup Change for 15N Pulse Parameter Measurement and CPMAS Optimization
258
Setup of the Double CP Experiment
259
Table 20.1. Recommended Parameters for the DCP Setup
260
Figure 20.4. Shape Tool Display with Ramp Shape from 45 to 55
261
Figure 20.5. Shape Tool Display with a Tangential Shape for Adiabatic Cross Polarization
262
Figure 20.6. Double CP Optimization of PL5 in Increments of 0.1 Db
263
Figure 20.7. Double CP Yield, Measured by Comparing CPMAS and DCP Amplitudes of the High Field
263
Setup of the 2D Double CP Experiment
264
2D Data Acquisition
265
Table 20.2. Recommended Parameters for the DCP 2D Setup
265
Spectral Processing
266
Table 20.3. Recommended Processing Parameters for the DCP 2D
266
Example Spectra
267
Figure 20.8. C-N Correlation Via Double CP in Histidine (Simple Setup Sample). 4Mm Triple H/C/N
267
Figure 20.9. NcαCX Correlation Experiment with 22 Ms DARR Mixing Period for Cα-CX Spin Diffusion on GB1 Protein Run Using an EFREE-Probe
268
21 CRAMPS: General
271
Homonuclear Dipolar Interactions
271
Multiple Pulse Sequences
271
W-PMLG and DUMBO
272
Quadrature Detection and Chemical Shift Scaling
273
Figure 21.1. Difference in Amplitude of the Quadrature Channels X and y
273
22 Cramps 1D
275
Pulse Sequence Diagram of W-PMLG or DUMBO
275
Figure 22.1. Pulse Sequence Diagram
275
Table 22.1. Phases, RF-Levels, Timings
275
Pulse Shapes for W-PMLG and DUMBO
276
Figure 22.2. PMLG Shape for Wpmlg, Sp1
276
Analog and Digital Sampling Modi
277
Figure 22.3. Shape for DUMBO, Sp1
277
Analog Mode Sampling
278
Digital Mode Sampling
278
Figure 22.4. Analog Sampling Scheme
278
Figure 22.5. Digital Sampling Scheme
278
Setup
279
Parameter Settings for PMLG and DUMBO
279
Table 22.2. PMLG Analog Mode
279
Fine Tuning for Best Resolution
281
Fine Tuning for Minimum Carrier Spike
281
Correcting for Actual Spectral Width
281
Digital Mode Acquisition
282
Examples
282
Figure 22.6. Optimizing Sp1 for Best Resolution
282
Table 22.4. Parameters for Digital Mode
282
Figure 22.7. Optimizing Cnst25 for Minimum Carrier Spike, Optimized at 120°C
283
Figure 22.8. Optimizing P14 for Minimum Carrier Spike, Optimized at 0.6 Μsec
283
Figure 22.9. WPMLG-CRAMPS after Optimization, Digital Acquisition
284
23 Modified W-PMLG
285
Pulse Sequence Diagram for Modified W-PMLG
285
Figure 23.1. Pulse Sequence Diagram
285
Pulse Shapes for W-PMLG
286
Setup
287
Parameter Settings for PMLG and DUMBO
287
Fine Tuning for Best Resolution
288
Correcting for Actual Spectral Width
288
Digital Mode Acquisition
289
Table 23.4. Parameters for Digital Mode
289
24 Cramps 2D
291
Proton-Proton Shift Correlation (Spin Diffusion)
291
Pulse Sequence Diagram
292
Figure 24.1. Pulse Sequence Diagram
292
Table 24.1. Acquisition Parameters
292
Data Processing
293
Table 11.2. Processing Parameters
293
Table 13.1. Acquisition Parameters
293
Examples
294
Figure 24.2. Setup and Test Spectrum of Alpha-Glycine
294
Table 13.2. Processing Parameters
294
Figure 24.3. Spectrum of Tyrosine-Hydrochloride
295
Proton-Proton DQ-SQ Correlation
296
Figure 24.4. Expansion of the Essential Part of the Spectrum
296
Pulse Sequence Diagram
297
Figure 24.5. Pulse Sequence Diagram
297
Data Processing
299
Examples
299
Table 24.6. Processing Parameters
299
Figure 24.6. Glycine, Proton-Proton DQ-SQ Correlation Using WPMLG in both Directions
300
Figure 24.7. 14.5 Khz W-PMLG/PC7 DQ/SQ Correlation at 600 Mhz with Tyrosine-Hydrochloride
301
Appendix
303
Form for Laboratory Logbooks
303
Figures
309
Tables
315
Index
319
Advertisement
Advertisement
Related Products
Bruker BioSpin minispec mq10
Bruker BioSpin minispec mq20 Airgap 33 mm with PGU
Bruker BioSpin minispec mq20 Toothpaste Analyzer
Bruker BioSpin minispec mq40
Bruker BioSpin minispec mq60
Bruker BioSpin minispec mq7.5
Bruker BioSpin minispec mq7.5 with PGU minispec PGU
Bruker BioSpin Categories
Measuring Instruments
Laboratory Equipment
Controller
Amplifier
Barcode Reader
More Bruker BioSpin Manuals
Login
Sign In
OR
Sign in with Facebook
Sign in with Google
Upload manual
Upload from disk
Upload from URL