JIAYU L11 Series Owner's Manual

Table of Contents

Advertisement

Quick Links

L11 Series User's Manual
Shenzhen Jiayu Mechatronic Co.,ltd

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the L11 Series and is the answer not in the manual?

Questions and answers

Summary of Contents for JIAYU L11 Series

  • Page 1 L11 Series User's Manual Shenzhen Jiayu Mechatronic Co.,ltd...
  • Page 2: Preamble

    Thank you very much for choosing Jiayu Mechatronic L11 series DC servo system. In order for you to use this servo product correctly, this manual systematically introduces the naming rules of servo drives and motors, confirmation of the matching of drives and motors, wiring, use, parameter setting, precautions for use and troubleshooting.
  • Page 3: Safety Precautions

    Safety Precautions Safety Code This product is not designed and manufactured for use in machinery and systems that pose a threat to personal safety. When selecting this product for the user's machinery and systems, safety measures must be considered in the design and manufacture to prevent improper use of the product. operation or abnormal accidents with this product.
  • Page 4: Installation

    Installation  Servo motors: Do not install over or near flammable materials to prevent fire. Avoid vibration and do not tolerate shocks. Do not install if damaged or incomplete parts. Servo drives: It must be installed in a control cabinet with an adequate level of protection. Adequate clearance must be retained from other equipment.
  • Page 5: Commissioning

    The U, V, and W terminals of the servomotor must not be reversed and must not be connected to AC power. The servo motor must be connected directly to the servo driver without access to capacitors, inductors or filters. Prevent conductive fasteners and wire tips from entering the servo drive. Wires and non-temperature-resistant bodies must not be placed close to servo drive heat sinks and servo motors.
  • Page 6: Troubleshooting

    Troubleshooting  The servo drive will remain at high voltage for some time even after a power failure, so do not disassemble the wires within 5 minutes after the power failure. To touch the terminal block. Personnel involved in dismantling and repair must have the appropriate professional knowledge and working ability.
  • Page 7: About The Warranty

    About the Warranty I. Service recipients: I. The services provided in this after-sales service terms and conditions are applicable to low-voltage servo products purchased in the Chinese market through Jiayu and its authorized legal channels. II. Services: 1 、 Warranty period: drive: 24 months; motor: 24 months; both include the customer's possible 6-month inventory cycle.
  • Page 8: 三. Circumstances That Do Not Entitle You To A Free Warranty

    Address: Floor 501, Qunhui Road No.25, Zone 72, Xingdong Community, Xin 'an Street, Bao 'an District, Shenzhen city, Guangdong Province, China. (2) Upon receipt of the repaired item, confirm whether it is a chargeable repair, if so, Jiayu contact the customer for a repair quote;...
  • Page 9 3)If you don't receive feedback within one week after sending out the repaired goods, please call the corresponding commercial staff to inquire, so as to avoid the repair parts in transit. Lost in the middle. (4) The final interpretation of these Terms of Service belongs to Shenzhen Jiayu Mechatronic Co.,ltd.
  • Page 10: Table Of Contents

    catalogs Preamble ............................. 2 Safety Precautions ..........................3 Safety Code ..........................3 Acceptance ..........................3 Transportation ..........................3 Installation ..........................4 Servo motor: ............................4 servo drive: ............................4 Wiring ..............................4 Commissioning ........................... 5 Use .............................. 5 Troubleshooting .......................... 6 System Options ........................... 6 About Warranty ...........................7 一.
  • Page 11 Chapter 五 MODBUS Protocol Control Use Cases ...............79 5.1 Communication configuration ....................79 5.2 Protocol format ........................79 5.3 Position Mode ........................82 5.4 Speed Mode ........................87 5.5 Moment Mode ........................88 5.6 Home mode .........................89 5.7 Torque/speed switching mode .................... 93 5.8 Speed/position switching mode ..................96 5.9 Speed/position switching mode ..................98 5.10 Demonstration mode .......................101...
  • Page 12: Chapter 一. Overview

    Chapter 一 Summarize 1.1 Products L11 series low-voltage servo drive is a new series of low-voltage servo drive independently developed by Shenzhen Jiayu Mechatronic Co., Ltd, which is now widely used in CNC machine tools, printing and packaging machinery, textile machinery, automated production lines and other automation fields.
  • Page 13: Product Model And Nameplate Identification

    12 - ST - RC - Serial number Implications Drive Series: L11 Series Number of axes: 1:1 axis 2:2 axes Rated voltage code: 03: DC10~DC36V 06: DC20~DC80V Rated current: 03: 3A 08: 8A 12: 12A 30: 30A Encoder Type: ST: Incremental 2500 line AT: Tamagawa Absolute...
  • Page 14: Servo Drive Specifications

    1.4 Servo Drive Technical Specifications Power Input DC24 ~ 80V overloaded Load = 100-300%. Incremental encoders (standard incremental, wire-saving, ABZ only without Encoder Hall) Feedback Absolute encoder (singleturn/multiturn, RS485 protocol) (only supported by AT hardware version) Pulse input 5V differential input 0~500kHz; 24V single-ended input 0~200kHz; 4-way PNP/NPN type signal input, support parameter selection universal Digital Inputs and input function...
  • Page 15: Servo Drive Dimensions

    1.5 Servo Drive Dimensions L11-10612 Dimensional Drawing L11-10630 Dimensional Drawing...
  • Page 16: Chapter 二 Servo Drive Connection Details

    Chapter 二 Servo Drive Connection Details 2.1 System Wiring Diagram...
  • Page 17: Servo Drive Main Circuit Connections

    2.2 Distribution of servo driver terminals 2.3 Servo driver main circuit connection 2.3.1 Power terminals Wire Diameter: The connecting wire diameters of different power drives are different, and the wire diameters of VCC, GND and BRK terminals are selected according to the rated current of the motor.
  • Page 18: Encoder Terminal Connections

    2.4 Servo Drive and Motor Power Cable Connection 2.4.1 Motor power cable connection J1 port name (of a thing) clarification bleeder resistor. brakes BRK and V+ are connected to the Mains Positive Main power supply interface (DC24~80V) Mains Negative earth (wire) grounding Motor U-phase Motor V-phase...
  • Page 19: Communication Terminal Connections

    J2-11 Hall V- D+/485+ J2-12 Hall U- D-485- J2-13 Encoder Z- J2-14 Encoder B- J2-15 Encoder A- 2.6 Communication terminal connection J5 port name clarification 232 Communication Transmitter Pin 232 communication RS232 interface receive pin 232 communication place T568B Color RJ45-1 RJ45-2 name...
  • Page 20 2.8 IO terminal control signal connection 2.8.1 IO Port Pin Definitions clarification code name (of a thing) number External command pulse input polarity selection: When connected to 24V PLC, PUL- and Pulse command DIR- low level inputs are valid; J4-11 PUDR input polarity When connected to 0VPLC, PUL+ and...
  • Page 21 2.8.2 IO Port PNP Input/Output Wiring...
  • Page 22 2.8.3 IO Port NPN Input/Output Wiring...
  • Page 23 2.8.4 Differential and Single-Ended Input Interfaces PUL+ PUL- PUL-PLC DIR+ DIR- ▲ 5V Pulse Amount Differential Drive Input Circuit PUL+ PUL+ PUL- PUL- PUL-PLC PUL-PLC +24V DIR+ DIR+ DIR- DIR- ▲ 24V Common Positive Pulse Volume Single-Ended ▲ 24V Common Negative Pulse Volume Driver Input Circuit Single-Ended Driver Input Circuit...
  • Page 24: Chapter 三 Commissioning Operations

    Chapter 三. Commissioning operations 3.1 Debugging software The company's website provides free download and use of debugging software MagicServo, with USB-RS485/USB-RS232 cable, one end of the connection to the personal computer, one end of the connection to the servo drive's RS485/RS232 interface, you can make the personal computer and the servo drive communication.
  • Page 25 3.2.2 Motor parameter check Steps name manipulate note Connecting to communication cable to connect the the MagicServo PC side corresponding to the host computer computer and the driver. Find corresponding motor Note that the motor specification parameters and fill in model number Motor Parameters...
  • Page 26: Pilot Implementation

    3.3 Pilot implementation In order to test run the servo motor and driver, you can use the JOG test run function to confirm whether the servo motor can rotate normally. Is there any abnormal vibration or abnormal sound when rotating? The JOG function can be run on a trial basis using the MagicServo host computer.
  • Page 27: Chapter 四 Parameters

    Chapter 四. Parameters 4.1 List of Parameter Groupings Function code group Function Type Range (computing) Control parameter sets F00-00 ~ F00-26 Position Ring Function F01-00 ~ F01-45 Group Speed Ring Function F02-00 ~ F02-19 Group Torque ring function F03-00 ~ F03-18 group Self-tuning F04-00 ~ F04-31...
  • Page 28: Parameter Function Details

    parameter set 402 Protocol Parameter F26-00 ~ F26-03 Group 4.2 Parameter Function Details 4.2.1 F00 control parameter set Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 2000 0x0000 F00-00 immediately Current loop proportional gain Sets the proportional gain of the current loop.
  • Page 29 constant. Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 30000 0x0003 F00-03 immediately Velocity loop integration time constant Sets the integration time constant of the speed loop. This parameter determines the responsiveness of the speed loop.
  • Page 30 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 0.1ms 0x0006 F00-06 immediately Velocity feed-forward filter coefficients Smoothing the mechanical shock caused by the position feedforward, the value is set too large to make the feedforward amount of hysteresis more prone to cause oscillation.
  • Page 31 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 0x000B F00-11 immediately Feedback speed filter coefficient Sets the feedback speed filter coefficient characteristics. The smaller the setting value, the lower the cutoff frequency and the lower the noise generated by the motor.
  • Page 32 0: External POT active bit1 1: Invalid external POT 0: External NOT active bit2 1: External NOT invalid 0: For incremental encoder bit3 1: When used as an absolute encoder Bit0 = 0 indicates that the servo external enable is active and the motor can be enabled by an external signal;...
  • Page 33 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 20000 0x0012 F00-18 immediately Gain switching time lag This value is used to set the gain switching action hysteresis Parameter default value minimum maximum unit (of causality 485 address number...
  • Page 34 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 0x0017 F00-23 immediately Clear Error Command 0: No clearance 1: Clearance Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 65535 0x0018...
  • Page 35 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 65535 0x0101 F01-01 immediately Number of position commands per 1 revolution of the motor Higher Parameter default value minimum maximum unit (of causality 485 address number value values...
  • Page 36 For a detailed description see chapter 6.1.2 Electronic gear ratio setting instructions. Parameter default value minimum maximum unit (of causality 485 address number value values measure) Power-on 65535 0x010A F01-10 effective Electronic Gear Ratio 1 Denominator For a detailed description see chapter 6.1.2 Electronic gear ratio setting instructions. Parameter default value minimum...
  • Page 37 1-phase A + phase B quadrature pulse, 4x frequency 2-CW+CCW Supplement: pulse command pulse pattern setpoint (computing) Pulse + Direction Symbol Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 0x0115 F01-21 immediately standby Parameter default value minimum...
  • Page 38 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 0x0119 F01-25 immediately Zero return mode selection There are several options for returning to zero: Hex3 Hex2 Hex1 Hex0 Zero with Origin 0: Forward direction signal change change...
  • Page 39 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 0.1A 0x011C F01-28 immediately Torque return to zero value, unit 0.1A Effective in torque zeroing mode as a judgment condition for limit point blocking current Parameter default value minimum...
  • Page 40 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 65535 0x0127 F01-39 immediately Demonstration mode gives high target position (demonstration mode only) High Write Value for a Given Position Parameter default value minimum maximum unit (of causality 485 address...
  • Page 41 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 65535 0x0201 F02-01 immediately Speed command communication setpoint This parameter takes effect when F02-00=5 Parameter default value minimum maximum unit (of causality 485 address number value values measure)
  • Page 42 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 0x0209 F02-09 immediately Torque Feed Forward Control Selection Specify: 0: No torque feedforward; 1: Internal torque feedforward Parameter default value minimum maximum unit (of causality 485 address number value...
  • Page 43 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 6000 0x020E F02-14 immediately Zero Speed Output Signal Threshold Output zero speed detection signal when the motor speed is lower than the speed set in this parameter. 4.2.4 F03 Torque ring function Parameter group Parameter default value...
  • Page 44 Valid when F3-00=0 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 0.1ms 0x0303 F03-03 immediately Torque command filtering time constant (magnified 100 times) Setting the torque filter can eliminate or reduce mechanical vibration, but mechanical vibration is sometimes introduced when it is not set properly.
  • Page 45 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 0x0307 F03-07 immediately Negative internal torque limit Negative torque limit value of the motor output when the run command comes from internal (the parameter setting range is subject to the actual overload capacity). Unit: % Parameter default value minimum...
  • Page 46 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 3000 6000 0x030C F03-12 immediately Torque control forward speed limit Maximum speed limit for forward operation in torque mode Parameter default value minimum maximum unit (of causality 485 address number...
  • Page 47 4.2.5 F05 DI function Parameter group Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 14368 61166 0x0500 F05-00 immediately DI1,DI2,DI3 Function Selection Specify: Each 5bit corresponds to a DO port function definition, distributed as follows: Bit15 Bit14 ~ Bit10 Bit9 ~ Bit5...
  • Page 48 POS_JOGn inverse pointing reserve POS_HALT stall reserve Supplement: Hexadecimal display. Every 5 bits are displayed on one digital tube. Displayed in correspondence. Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 5251 61166 0x0501 F05-01 immediately See F05-00 for description.
  • Page 49 Multifunctiona meaning Value l DI Name When F0-15.bit0=0 internal enable is invalid, input this signal to enable the motor, otherwise disable it. ZEROFIX Zero-speed embedded signal. Forward drive disable, when F0-15.bit1=0, input this signal to allow forward drive, when F0-15.bit1=1, this signal is invalid. Reverse drive disable, when F0-15.bit2=0, input this signal to allow reverse, when F0-15.bit2=1, this signal is invalid.
  • Page 50 When F0-20 = 3, the Msel signal is in speed mode when valid and in torque mode when invalid. When F0-20 =4, the Msel signal is in position mode when valid and in velocity mode when invalid. When F0-20 = 5, the Msel signal is in position mode when valid and in torque mode when invalid.
  • Page 51 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 1000 0x0506 F05-06 immediately Brake Waiting Speed If the motor speed drops below the parameter setting after the servo is turned off, the /BK signal is output. Parameter default value minimum...
  • Page 52 4.2.6 F06 AO/DO Functions Parameter Groups Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 12816 65535 0x0600 F06.00 immediately DO function assignment Specify: Each 4bit corresponds to a DO port function definition, distributed as follows: Bit15 ~ Bit12 Bit11 ~ Bit8 Bit7 ~ Bit4...
  • Page 53 Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 0x0605 F06.05 immediately DO output level selection Specify: Each bit corresponds to a DO port function definition, distributed as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0...
  • Page 54: Summary Table Of Parameters

    4.3 Summary table of parameters 4.3.1 Group F00 control parameter set Paramete default minimum maximum name clarification r number value value values Current loop proportional F0-00 2000 gain Current loop integration time F0-01 32000 constant Velocity loop proportional F0-02 2000 gain Velocity loop...
  • Page 55 Paramete default minimum maximum name clarification r number value value values 0: External POT active bit1 1: Invalid external POT 0: External NOT active bit2 1: External NOT invalid 0: For incremental encoder bit3 1: When used as an absolute encoder 0- First gain fixed (PS) 1- Switching with external DI (PS)
  • Page 56 Paramete default minimum maximum name clarification r number value value values F0-26 reservations 1000 4.3.2 F01 group position ring function Parameter default minimum maximum name clarification number value value values 0: Pulse command 1: F1-00 Location command source Multi-segment position command given Number position...
  • Page 57 Parameter default minimum maximum name clarification number value value values 0-pulse + direction 1-phase A + phase B quadrature F1-15 Pulse Command Form pulse, 4x frequency 2-CW+CCW F1-16 crossover output molecule 65535 1 ~ 65535 Crossover Output F1-17 65535 1 ~ 65535 Denominator 0-Encoder divided output 1-Pulse command synchronized...
  • Page 58 Parameter default minimum maximum name clarification number value value values 0: Zero return with Z signal Hex2: 1: Without Z signal return to zero High-speed search speed of F1-26 3000 0 ~ 3000 home switch signal Low speed search for home F1-27 1000 0 ~ 1000...
  • Page 59 Paramete default minimum maximum name clarification r number value value values Speed command keypad Reverse speed = 65536 minus set F2-02 65535 setpoint speed F2-03 Tap speed setting value 6000 Tap speed setting The time required to accelerate Speed command acceleration F2-04 5000 65535...
  • Page 60 Torque command filtering F3-03 time constant (magnified 100 0 ~ 30.00 times) torque command F3-04 filtering time constant 0 ~ 30.00 (magnified 100 times) 0 - positive and negative internal torque limit F3-05 Source of torque limitation 1 - Positive and negative external torque limiting (utilizing P-CL, N-CL selection) F3-06...
  • Page 61 4.3.5 F04 group self-tuning function Paramete default minimum maximum name clarification r number value value values 0- Parameter self-adjustment is invalid, manually adjust the parameter 1- Parameter self-adjustment mode, F4-00 Self-adjusting mode selection automatic adjustment of gain parameters with a rigid meter 2 - Positioning mode, automatic adjustment of gain parameters with a rigid meter...
  • Page 62 Paramete default minimum maximum name clarification r number value value values F4-11 Group 1 Trap Width Rating 0~20 F4-12 Group 1 Trap Depth Rating 0~99 F4-13 Group 2 Trap Frequency 4000 5000 50~5000 F4-14 Group 2 Trap Width Rating 0~20 F4-15 Group 2 Trap Depth Rating 0~99...
  • Page 63 Paramete default minimum maximum name show r number value value values 14-ORG 15-Ger_SEL 16-CMD1 17-CMD2 18-CMD3 19-PlusInhiBit 20-MSel F5-01 DI Function Assignment 2 5251 61166 Same as F5-00 F5-02 DI Function Assignment 3 8422 61166 Same as F5-00 (Bitwise operation) 0 - low level 1 - F5-03 DI active level selection high level...
  • Page 64 Parameter default minimum maximum name clarification number value value values output signal) 7-HOMEND (end-of-zero-finding output signal) 8-PNLIMIT (acknowledgement of travel limitation signal) DO Functional Assignment F6-01 F6-02 Reservation 1 F6-03 Reservation 2 F6-04 Reservation 3 (Bitwise operation) 0 - low level 1 - F6-05 DO output level selection high level...
  • Page 65 Parameter default minimum maximum name clarification number value value values Encoder resolution low bit F7-03 65535 (may exceed 2^16) F7-04 Z-angle F7-05 Encoder Rotation 0.0 ~ 360 F7-06 polar logarithm F7-07 Maximum current 1000 F7-08 Rated torque 65535 0-Normal incremental 1-Wire-saving F7-09 Encoder Type...
  • Page 66 4.3.9 F08 communication parameter set Paramete default minimum maximum name clarification r number value value values F8-00 Local address of the CAN Master-slave selection for 0: master; 1: slave F8-01 0: Baud rate 50K 1: Baud rate 100K 2: Baud rate 125K 3: Baud rate 250K F8-02 Baud rate selection for CAN 4: Baud rate 500K 5: Baud rate...
  • Page 67 Parameter default minimum maximum name clarification number value value values F9-05 Braking into high (0.1V) 6500 Braking into point 6200 F9-06 (0.1V) Position maximum deviation F9-07 high Position Maximum 0, no alarm. 65535 F9-08 Deviation Low F9-09 Maximum speed (rpm) 3500 10000 Whether to turn on the...
  • Page 68 Parameter default minimum maximum name clarification number value value values Feedback position 2 read-only read-only (computing) F10-06 (computin 65535 Feedback position 1 read-only Read only (total position is 4 bytes, F10-07 (computin 65535 this parameter is the lowest bit) High lap position read-only read-only (computing) F10-08...
  • Page 69 Parameter default minimum maximum name clarification number value value values position following read-only read-only (computing) F10-20 deviation (computin 65535 High position following read-only read-only (computing) F10-21 deviation (computin 65535 Version #1 read-only read-only (computing) F10-22 (computin 65535 Version #2 read-only read-only (computing) F10-23 (computin...
  • Page 70 Parameter default minimum maximum name clarification number value value values F16-03 Reservation 1 Paragraph 1 Position relative position, absolute F16-04 Instruction Type Selection position F16-05 Paragraph 1 position low 20000 65535 F16-06 Paragraph 1 position high 65535 F16-07 Paragraph 1 speed 1000 5000 F16-08...
  • Page 71 Parameter default minimum maximum name clarification number value value values Instruction Type Selection position F16-35 Paragraph 6 position low 20000 65535 F16-36 Paragraph 6 position high 65535 F16-37 Paragraph 6 speed 1000 5000 Filtering time for F16-38 1000 paragraph 6 Paragraph 6 Duration of F16-39 1000...
  • Page 72 Parameter default minimum maximum name clarification number value value values Speed of the first leg of the F17-05 5000 Acceleration of the first leg F17-06 1000 of the run Running time of the first F17-07 65535 segment Speed of the second leg of F17-08 5000 the run...
  • Page 73 Parameter default minimum maximum name clarification number value value values Operational speed of the F17-26 5000 eighth segment Operational acceleration of F17-27 1000 the eighth segment Running time of the eighth F17-28 65535 segment F17-29 Reserved bit 0 65535 F17-30 Reserved bit 1 65535 F17-31...
  • Page 74 Parameter default minimum maximum name clarification number value value values F18-10 Historical Alarms 3 65535 F18-11 Historical Alarms 4 65535 F18-12 Historical Alarm 5 65535 F18-13 reservations 65535 F18-14 reservations 65535 F18-15 reservations 65535 F18-16 reservations 65535 F18-17 reservations 3999 4000 F18-18 reservations...
  • Page 75 Parameter default minimum maximum name clarification number value value values F22-03 RPDO1 transmission type 65535 RPDO1 transmission type F22-04 Number of RPDO2 entries 65535 Number of RPDO2 entries F22-05 RPDO2 Receive ID_H 65535 RPDO2 Receive ID_H F22-06 RPDO2 receive ID_L 65535 RPDO2 receive ID_L F22-07...
  • Page 76 Parameter default minimum maximum name clarification number value value values F23-23 Third mapped address_H 65535 Third mapped address_H F23-24 Third mapped address_L 65535 Third mapped address_L F23-25 Fourth mapped address_H 65535 Fourth mapped address_H F23-26 Fourth mapped address_L 65535 Fourth mapped address_L F23-27 Number of mapped objects 65535...
  • Page 77 Parameter default minimum maximum name clarification number value value values F24-21 Number of entries 65535 Number of entries F24-22 TPDO4 sends ID_H 65535 TPDO4 sends ID_H F24-23 TPDO4 Send ID_L 65535 TPDO4 Send ID_L F24-24 Type of transmission 65535 Type of transmission F24-25 suppression time 65535...
  • Page 78 Parameter default minimum maximum name clarification number value value values F25-27 Number of mapped objects 65535 Number of mapped objects F25-28 First mapped address_H 8202 65535 First mapped address_H F25-29 First mapped address_L 4880 65535 First mapped address_L F25-30 Second mapped address_H 8202 65535 Second mapped address_H...
  • Page 79: Chapter 五 Modbus Protocol Control Use Cases

    Chapter 五 MODBUS protocol control use case At present, the drive serial communication supports Modbus RTU protocol, the upper computer, controller and other control terminal through RS232/RS485 can read and write function code parameter operations on the drive to realize the monitoring of real-time current, real-time position of the drive operation, fault information and other status, set the drive of the function of the control of the parameter value, and so on.
  • Page 80  Data High / Data Low The number of parameters to read. Reading the value of a parameter is 0x00 0x01, i.e., the high byte comes first and the low byte comes second;  CRC Low / CRC High CRC16 checksum value, CRC_L CRC_H, i.e., low byte first, high byte second;...
  • Page 81 5.2.2 Writing a single function code (0x06) Command sending format ADDR_H ADDR_L DATA_H DATA_L CRC_L CRC_H address target high level Data command Data lows CRC Low CRC High address of address Highs position  target address That is, the drive address (0~32), needs to be converted to hexadecimal. The Axis 01 drive ID address is 0x01 and the Axis 02 drive ID address is 0x02.
  • Page 82: Position Mode

    Responding local error CRC Low CRC High address code Commands  local address That is, the drive address (0~32), needs to be converted to hexadecimal. The Axis 01 drive ID address is 0x01 and the Axis 02 drive ID address is 0x02. The address definitions are related to the drive program settings;...
  • Page 83 selection 1: CW 2. Electronic gear ratio setting Multiply the input pulse command value by the set division/multiplication coefficient to realize the amount of motor rotation and movement for an arbitrarily set unit input command pulse. move parameter number Parameter name Setting value range Change method Electronic gear ratio 1...
  • Page 84 threshold immediately The position command pulse of the upper unit is available in the form of differential drive (long line drive) and open collector drive (single-ended drive). (1)The differential drive is a signal transmission method that is less susceptible to noise interference and has a maximum input pulse frequency of 500kHz;...
  • Page 85 PUL+ PUL+ PUL- PUL- PUL-PLC PUL-PLC +24V DIR+ DIR+ DIR- DIR- ▲ 24V Common Positive Pulse Volume Single-Ended ▲ 24V Common Negative Pulse Volume Driver Input Circuit Single-Ended Driver Input Circuit Input Timing Requirements parameters Differential drive inputs Single-ended drive input >2μs >5μs >1μs...
  • Page 86: Motion Settings

    5.3.2 Motion settings Steps parameter Parameter name Setting value range Change method number Power-on F0-20 operating mode 0: Position mode effective 0: Pulse command 1: Multi-segment Power-on F1-00 Location command source position command given effective 0: External SON active bit0 1: Internal auto enable 0: External POT active bit1...
  • Page 87: Application Examples

    the lowest bit) 5.3.4 Application examples (1) Inquiry current (F10-00) Query current: 01 03 0A 00 00 01 87 D2 (2) Search speed (F10-02) Query speed: 01 03 0A 02 00 01 26 12 (3) Query location (F10-07) Query current: 01 03 0A 07 00 01 FA 13 5.4 Speed Mode 5.4.1 Motion Settings Steps...
  • Page 88: Moment Mode

    5.4.2 Query Settings parameter Parameter name way (of life) number F10-00 Feedback current (0.1A) read-only (computing) F10-02 Feedback speed (rpm) read-only (computing) 5.4.3 Application examples (1) Set the operation mode (F00-20) setting to 1 (a reboot is required after the setting is completed to be effective).
  • Page 89: Home Mode

    Torque command Effective F3-01 0 ~ 65535 communication set value immediately 0: Determined by mode, internal command corresponds to internal torque, external command Effective F3-05 Source of torque limitation corresponds to external torque. immediately 1: Positive and negative torque limitation (selected by P-CL, N-CL) 5.5.2 Query Settings parameter Parameter name...
  • Page 90 1: Limit zeroing 2: Torque zeroing 3: Immediate change 0: Zero with Z signal Hex2 1: Without Z signal change F1-26 Effective High-speed zero point speed 0 ~ 3000 immediately F1-27 Low zero point speed 0 ~ 1000 Effective immediately F1-28 Torque return to zero value 0 ~ 1000...
  • Page 91: Home Action

    5.6.2 HOME Action Positive Home + Z Signal Zeroing Negative home + Z signal zeroing...
  • Page 92 Positive limit + Z signal zeroing Negative limit + Z signal zeroing...
  • Page 93: Torque/Speed Switching Mode

    Positive torque + Z signal zeroing Negative torque + Z signal zeroing Immediate change method 5.7 Torque/speed switching mode Steps parameter Parameter name Setting value range Change method number Power-on F0-20 operating mode 3: Torque/speed switching effective 0: External SON active bit0 F0-15 1: Internal auto enable...
  • Page 94 0: External NOT active bit2 1: External NOT invalid 0: For incremental encoder bit3 1: When used as an absolute encoder 0: Digital given (F2-02) 1: AI1 2: Power-on F2-00 Speed command source 3: 0 (no effect) effective 4: Multi-segment speed command 5: Communication given (F2-01) Speed command...
  • Page 95 DI1: SON is the motor enable signal. DI2: MSel is the mode switching signal 5.7.2 Query Settings parameter Parameter name way (of life) number F10-00 Feedback current (0.1A) read-only (computing) F10-02 Feedback speed (rpm) read-only (computing) 5.7.3 Application examples (1) Set the operation mode (F00-20) setting to 3 (a reboot is required after the setting is completed to be effective).
  • Page 96: Speed/Position Switching Mode

    Query current: 01 03 0A 00 00 01 87 D2 (8) Search speed (F10-02) Query speed: 01 03 0A 02 00 01 26 12 5.8 Speed/position switching mode 5.8.1 Motion Settings Steps parameter Parameter name Setting value range Change method number Power-on F0-20...
  • Page 97 time constant immediately Speed command deceleration Effective F2-05 0 ~ 65535 time constant immediately DI1: SON is the motor enable signal. DI2: MSel is the mode switching signal 5.8.2 Query Settings parameter Parameter name way (of life) number F10-00 Feedback current (0.1A) read-only (computing) F10-02 Feedback speed (rpm)
  • Page 98: Speed/Position Switching Mode

    5.8.3 Application examples (1) Set the operation mode (F00-20) setting to 4 (a reboot is required after the setting is completed to be effective). 01 06 00 14 00 04 C8 0D Set the operation mode to speed/position switching mode: (2) The speed command source (F02-00) is set to 5 (a reboot is required for the setting to be valid after completion).
  • Page 99 operation mode 1: Requires startup signal immediately CMD1 Bit1 0: Invalid 0: Single-step operation Bit2 1: Cyclic operation 0: delayed step change Bit3 1: CMD3 step change Bit4 0: Invalid 0: Digitally given (F3-02) 1: AI1 Power-on F3-00 Torque command source 2: AI2 effective 3: 0...
  • Page 100 5.9.2 Query Settings parameter Parameter name way (of life) number F10-00 Feedback current (0.1A) read-only (computing) F10-02 Feedback speed (rpm) read-only (computing) Read only (total position is F10-04 Feedback position 4 4 bytes, this parameter is the highest bit) F10-05 Feedback position 3 read-only (computing) F10-06...
  • Page 101: Demonstration Mode

    5.10 Demonstration Model 5.10.1 Motion Settings Steps parameter Parameter name Setting value range Change method number Power-on F0-20 operating mode 6: Demonstration mode effective 0: External SON active bit0 1: Internal auto enable 0: External POT active bit1 1: Invalid external POT F0-15 Bit Selection Parameters Power-on...
  • Page 102: Emergency Stop (Only Valid In Position Mode)

    5.10.3 Application examples (1) Set the operation mode (F00-20) setting to 6 (a reboot is required after the setting is completed to be effective). 01 06 00 14 00 06 49 CC Set the operation mode to speed mode: (3) The target speed (F1-41) is set to 200 rpm. Set speed to 200 rpm: 01 06 01 29 00 C8 58 68 (4) Target position (F1-40) set to 20000 Set position 20000: 01 06 01 28 4E 20 3C 46...
  • Page 103: Chapter 六 Functional Applications

    Chapter 六. Functional applications 6.1 Security functions 6.1.1 Maximum motor speed limit function Parameter default value minimum maximum unit (of causality 485 address number value values measure) Effective 3500 6000 0x0909 F09-09 immediately Maximum speed in 1rpm Setting the maximum speed for motor operation...
  • Page 104: Chapter 七 Canopen Communication

    Chapter 七 CANopen Communication 7.1 Hardware Wiring and Precautions 7.1.1 Diagram of 232/485 connection RS485 Connection Diagram...
  • Page 105 RS232 Connection Schematic...
  • Page 106 7.1.2 Schematic of the CANOPEN connection of a single diagram drive Single CAN connection diagram 7.1.3 Multi-drive CANOPEN /485 networking The drive has two access ports for communication cables (L11 with RJ45 connectors), from which the cable is connected to the next slave device if a slave needs to be connected, or to which terminating resistors can be added if no other slave needs to be connected.
  • Page 107 For the bus cable, use a shielded cable with two pairs of twisted pairs: one pair of twisted pairs to CANL and CANH, and one pair of twisted pairs directly to GND. Diagram of multiple CAN connections For example, the network consists of a PLC and three drives, A, B, and C. The cable wiring is as follows: PLC →...
  • Page 108: Communication Parameters And Interface Definitions

    Diagram of multiple 485 connections 7.1.4 CANOPEN Networking Considerations (1) The shorter the line between the nodes, the better, the longest recommended not to exceed 3m; (2) Shielded twisted pair cable is recommended for CAN communication cable; (3) Connect the driver's CAN communication circuit reference ground GND; (4) When using a shielded cable, the two ends of the shield should be connected to PE, not to GND, otherwise the port will be damaged;...
  • Page 109 As shown in the picture. dial Corresponding position dial status When S1, S2, S3 are dialed OFF, the default ID is 1, at this time you need to want to customize the ID number, as follows...
  • Page 110: Canopen Communication Services

    J3-8 Brown POWER GROUND 7.3 CANopen communication services The L11 series follows the CANopen specification ★ Compliant with CAN 2.0A standard CANopen communication ★ Compliant with CANopen standard protocol DS 301 V4.02 ★ Compliant with CANopen standard protocol DSP 402 V2.01 CANopen-supported services for the L11 series: ★...
  • Page 111 PDO2 (transmit) 0101 281h ~ 2FFh 1801h PDO2 (accepted) 0110 301h ~ 37Fh 1401h PDO3 (send) 0111 381h ~ 3FFh 1802h PDO3 (accepted) 1000 401h ~ 47Fh 1402h PDO4 (transmit) 1001 481h ~ 4FFh 1803h PDO4 (accepted) 1010 501h ~ 57Fh 1403h SDO (send) 1011...
  • Page 112  give an example Slave station number is 1, read function code maximum speed threshold F02-06 with SDO, i.e. object 0x2002-07, and the master sends the message as follows. (hexadecimal) COB-ID The default value of the maximum speed is 6000rpm, i.e. 0x1770, and the return message is as follows under normal conditions.
  • Page 113: Object Dictionary (Od)

    COB-ID PDO parameters According to the difference between receiving and sending, PDO can be divided into RPDO and TPDO. PDO is determined by the communication parameter and the mapping parameter to determine the final transmission method and content. The servo driver uses 4 RPDOs and 4 TPDOs to realize the transmission of PDO, and the related objects are listed as follows.
  • Page 114 types Device Specification Basic 0060-007FH Data Types Device Specification 0080H-009FH 9800H-9FFFH Objects for Logical Device 8 Composite Data Type Objects used by the 00A0H-0FFFH reservations A000H-BFFFH Standard Interface Specification 1000H-1FFFH communications protocol C000H-FFFFH reservations Among the most commonly used objects are 1) 1000H-1FFFH, the objects used by the communication specification.
  • Page 115: Network Management (Nmt)

    7.5.4 Accessing Attributes causality descriptive readable write only read-only (computing) CONST Constant, read-only 7.6 Network Management (NMT) The NMT provides a network management service. This service is implemented using a master-slave communication model (so there is only one NMT master node). 7.6.1 NMT Module Control Only the NMT master node can transmit NMT Module Control messages, and all slave nodes must support the NMT Module Control service.
  • Page 116 7.6.2 NMT Node Protection Through this service, the NMT master node can check the current state of each node, and the master node sends remote frames in the format of Down: NMT master node NMT slave node COB-ID 0x700+Node-ID The NMT slave node answer message format is as follows: NMT slave node NMT master node COB-ID...
  • Page 117 7.6.3 NMT Boot-up The NMT slave node publishes a Boot-up message to notify the NMT master node that it has moved from the initialization state to the preoperational state. NMT slave node NMT master node COB-ID Byte 0 0x700+Node-ID 7.6.4 NMT Communication State Machine The master controls the drive through the controlword and knows the current status of the drive by reading the statusword of the drive.
  • Page 118: Process Data Objects (Pdo)

    The servo drive is waiting to enter the Switch On state and the motor is not excited. Servo ready. Servo drive servo ready status, main power is on. Waiting to turn on servo enable The servo drive servo inputs an excitation signal to the motor and controls the motor servo operation according to the control mode.
  • Page 119 PDO Communication Parameters: Contains the COB-ID that will be used by the  PDO, the transmission type, the inhibit time and the timer period. PDO Mapping Parameters: Contains a list of objects in the object dictionary that  are mapped into the PDO, including their in bits. Producers and consumers must be aware of this mapping in order to interpret the PDO content.
  • Page 120: Service Data Objects (Sdos)

    information is so large that it always occupies the bus, while other lower-priority data is unable to compete for the bus. The inhibit time is defined by a 16-bit unsigned integer with a unit of 100us. A PDO can specify an event timing period after which a PDO transfer can be triggered (no trigger bit required).
  • Page 121: Configuring Use Cases

    AD Sampling Error Alarm 5210 Damaged bleeder resistor alarm 5420 Regeneration Abnormal Alarm 5421 Parameter and test exceptions 5581 Electronic Gear Error 5582 Motor model parameter or drive model parameter error 5583 Illegal error code 6100 PDO mapping error 6120 CAN communication parameter error (wrong address or 6300 communication baud rate parameter)
  • Page 122 7.10.2 RPDO,TPDO Mapping Use Cases RPDO Mapping Example: using configuration 2 RPDOs, one for 6040h and one for 607Ah and 6081h. slave response message 581h(ID) is omitted here. rpdo 1 mapped: Message : 601(ID) 2F 00 16 00 00 00 00 00 //Clear the number of RPDO1 mapping objects and stop the RPDO Message: 601(ID) 23 00 16 01 10 00 40 60 // Map 6040h to the first object...
  • Page 123 (e.g., index is 1600h, sub-index is 00h, set to 1) in order to start the PDO; Pay attention to the length and number of data configured. Incorrect settings will result in incorrect configuration. Time critical objects should be mapped to PDOs as needed to minimize bus load. Example: RPDO1 configuration Clear RPDO1 COB-ID High 1: Send: 601 23 00 14 01 01 02 00 80...
  • Page 124 Red is the communication Setting the synchronization of object of 01 14 1: Send: 601 2F 00 00 00 RPDO2 RPDO2, green is the synchronization. RPDO3 Configuration Clear RPDO3 COB-ID high level 1: Send: 601 23 02 14 01 01 04 00 08 Clear the number of RPDO3 mapped objects and stop this 02 16...
  • Page 125 mapping process is complete. Red is the communication Setting the synchronization of object of 03 14 1: Send: 601 2F 00 00 00 RPDO4. RPDO3, green is the synchronization. TPDO1 Configuration Clear TPDO1 COB-ID High 1: Send: 601 23 00 18 01 81 01 00 80 Clear the number of TPDO1 mapped objects and stop this 1: Send: 601 2F...
  • Page 126 Mapping F10-03 (Command 1: Send: 601 23 01 1A 04 10 20 Speed (rpm))) to the second object Set the number of objects to be mapped by TPDO2, and the 1: Send: 601 2F 01 1A 00 00 00 00 mapping process is completed.
  • Page 127 Clear TPDO4 COB-ID high level 1: Send: 601 23 03 18 01 81 04 00 80 Clear the number of TPDO4 mapped objects and stop this 1: Send: 601 2F 03 1A 00 00 00 00 00 TPDO. Mapping F10-18 (fault code 1) to 1: Send: 601 23 03 1A 01 13 20...
  • Page 128 7.10.3 Profile Velocity (PV) Mode Configuration Use Case Example: 1. Setting the control mode (speed Send: 601 2F 60 60 00 03 00 00 00 mode) 2. Setting acceleration: Setting acceleration 20rpm/s Send: 601 23 83 60 00 00 C8 00 00 (200*0.1rpm/s) 3.
  • Page 129 7.10.4 Profile Position (PP) Mode Configuration Use Cases Example: 1. Setting the control mode Send: 601 2F 60 60 00 01 00 00 00 (position mode) 2. Set state machine: set 6040h to 6, switch to read to switch on Send: 601 2B 40 60 00 06 00 00 00 state 3.
  • Page 130 Clear the number of TPDO1 Send: 601 2F 00 1A 00 00 00 00 00 00 mapping objects Mapping 6041h to the first object Send: 601 23 00 1A 01 10 00 41 60 Set the number of TPDO1 mapping Send: 601 2F 00 1A 00 01 00 00 00 00 objects, and the mapping process is complete.
  • Page 131 Transmit: 601 2B 40 60 00 1F 00 00 00 (absolute position) The driver enters the IP_ACTIVE state Send: 601 2B 40 60 00 5F 00 00 00 (relative position) start a communication Send: 00 01 01 (running in absolute position): Send: 201 a0 86 01 00 Send: 202 20 a1 07 00 Send: 80...
  • Page 132 Return to zero mode Home signal (no Z signal) (6098) NOT falling edge POT falling edge HW falling edge HW rising edge HW falling edge HW rising edge HW falling edge HW rising edge HW rising edge HW falling edge HW falling edge HW rising edge HW rising edge...
  • Page 133 Zero return operation started Send:601 2B 40 60 00 1F 00 00 00 00 Cancel zero return Send:601 2B 40 60 00 0F 00 00 00 00 Introduction to Back to Zero Mode 1. 6098h=1 ★ Mechanical home position: Motor Z signal ★...
  • Page 134 �1 = 6099−02ℎ 609�ℎ Zero return is initiated with N-0T=1, and zero return is initiated directly forward and low, encountering the first Z stop after the falling edge of N-0T. 2. 6098h=2 ★ Origin: Z signal ★ Deceleration point: Positive over-travel switch 1)Invalid deceleration point signal at zero start Fig.
  • Page 135 ★ Deceleration point: Home switch (HW) 1)Invalid deceleration point signal at zero start Fig. 5 6098h=3 and invalid deceleration point signal mode① �1 = s �2 = s �3 = 6099−01ℎ 6099−01ℎ 6099−02ℎ 609�ℎ 609�ℎ 609�ℎ When starting to return to zero, HW=0, start to return to zero with positive high speed, after encountering the rising edge of HW, decelerate→reverse→reverse low speed, after encountering the falling edge of HW, continue to run, and after that, encounter the first Z to stop.
  • Page 136 Fig. 7 6098h=4 and invalid deceleration point signal mode① HW=0 at the beginning of zero return, start to return to zero with forward high speed, after encountering the rising edge of HW, decelerate, reverse, reverse low speed operation, after encountering the falling edge of HW, decelerate, reverse, i.e., return to forward low speed operation, and stop at the first Z after encountering the rising edge of 2)Deceleration point signal active at zero start Fig.
  • Page 137 Fig. 9 6098h=5 and invalid deceleration point signal mode① �1 = s �2 = s �3 = 6099−01ℎ 6099−01ℎ 6099−02ℎ 609�ℎ 609�ℎ 609�ℎ HW=0 at the beginning of zero return, start zero return with reverse high speed, decelerate→reverse→forward low speed after encountering the rising edge of HW, and stop at the first Z after encountering the falling edge of HW.
  • Page 138 Fig. 11 6098h=6 and deceleration point signal invalid mode① Starting to return to zero with HW=0, starting to return to zero at a high speed in the reverse direction, decelerating and reversing after encountering the rising edge of HW, running at low speed in the forward direction, decelerating and reversing after encountering the falling edge of HW, i.e., resuming operation in the reverse direction, running at low speed in the reverse direction, and stopping at the first Z after encountering the rising edge of HW.
  • Page 139 Fig. 13 6098h=7 and the deceleration point signal is invalid, limit switch mode ① is not encountered �1 = s �2 = s �3 = 6099−01ℎ 6099−01ℎ 6099−02ℎ 609�ℎ 609�ℎ 609�ℎ When starting to return to zero, HW=0, start to return to zero at a positive high speed, if no limit switch is encountered, decelerate→reverse→reverse low speed after encountering the rising edge of HW, and stop at the first Z after encountering the falling edge of HW.
  • Page 140 Fig. 15 6098h=7 and Deceleration Point Signal Valid Mode (3) �1 = 6099−02ℎ 609�ℎ Zero return start with HW=1 is a direct reverse low speed start to zero return, encountering the first Z stop after the falling edge of HW. 8.
  • Page 141 Fig. 17 6098h=8 and the deceleration point signal is invalid, encountering a positive limit switch mode② �1 = s �2 = s �3 = 6099−01ℎ 6099−01ℎ 6099−01ℎ 609�ℎ 609�ℎ 609�ℎ �4 = s �5 = s �6 = [6099−01ℎ]−[6099−02ℎ] 6099−02ℎ 6099−02ℎ...
  • Page 142 Fig. 19 6098h=9 and invalid deceleration point signal, no positive limit switch �1 = s �2 = mode encountered① s �3 = 6099−01ℎ [6099−01ℎ]−[6099−02ℎ] 6099−02ℎ 609�ℎ 609�ℎ 609�ℎ �4 = 6099−02ℎ 609�ℎ Start to return to zero with HW=0, start to return to zero with forward high speed, if no limit switch is encountered, after encountering the rising edge of HW →...
  • Page 143 Fig. 21 6098h=9 and Deceleration Point Signal Valid Mode ③ �1 = s �2 = s �3 = 6099−02ℎ 6099−02ℎ 6099−02ℎ 609�ℎ 609�ℎ 609�ℎ Zero return start HW = 1, then directly forward low speed start to return to zero, after encountering the falling edge of HW →...
  • Page 144 decelerate to run at a reverse, positive low speed, and stop at the first Z after encountering the falling edge of HW. 2)Invalid deceleration point signal on return-to-zero start, encounter positive limit switch Fig. 23 6098h=10 and deceleration point signal is invalid, encountering positive limit switch mode ②...
  • Page 145 12. 6098h=17~30 Return to zero mode (6098) Home signal (no Z signal) NOT falling edge POT falling edge HW falling edge HW rising edge HW falling edge HW rising edge HW falling edge HW rising edge HW rising edge HW falling edge HW falling edge HW rising edge HW rising edge...
  • Page 146: Appendix: Object Dictionary Table

    Figure 25 6098h=33 or 34 schematic diagram 15. 6098h=35 Return to zero mode 35, with the current position as the mechanical home position, after triggering the home return to zero (6040h control word: 0x0F→0x1F). The user's current position 6064h = 607C. Appendix: Object Dictionary Table List of object group 1000h allocations unit (of...
  • Page 147 1017 Producer heartbeat time UINT16 Device Objects Number of entries UINT8 Manufacturer ID UINT32 1018 Device Code UINT32 Equipment revision number UINT32 serial number UINT32 misbehavior 1029 Number of entries UINT8 communications error UINT8 SDO server parameters 1200 Number of entries UINT8 Client to server cob_id_ UINT32...
  • Page 148 Rpdo1 fourth mapping object UINT32 Rpdo2 mapping parameters Number of entries UINT8 1601 Rpdo2 first mapping object UINT32 Rpdo2 second mapping object UINT32 Rpdo2 third mapping object UINT32 Rpdo2 fourth mapping object UINT32 Rpdo3 mapping parameters Number of entries UINT8 1602 Rpdo3 First Mapping Object UINT32...
  • Page 149 time counter UINT16 Tpdo4 Communication Parameters Number of entries UINT32 1803 COB-ID of Tpdo4 UINT32 Tpdo4 transmission types UINT8 sanitization UINT16 time counter UINT16 Tpdo1 mapping parameters Number of entries UINT8 1A00 Tpdo1 first mapping object UINT32 Tpdo1 second mapping object UINT32 Tpdo1 third mapping object UINT32...
  • Page 150 List of object group 2000h allocations  F00 Control parameter group unit (of indexing subindex name data type causality mappable measure) Current loop proportional UINT16 gain Current loop integration UINT16 constant Velocity loop proportional UINT16 gain Velocity loop integration UINT16 time constant Position ring proportional UINT16...
  • Page 151 unit (of indexing subindex name data type causality mappable measure) UINT16 Parameter initialization Clear Error Command UINT16 Bit Selection Parameters UINT16 Position loop gain UINT16 switching time Manufacturer's password UINT16...
  • Page 152  F01 Position ring function group unit (of indexing subindex name data type causality mappable measure) Location command source UINT16 Number position UINT16 commands per 1 revolution of the motor Higher Number position UINT16 commands per 1 rotation of the motor low Position command filter UINT16 coefficients...
  • Page 153 unit (of indexing subindex name data type causality mappable measure) Positioning Completion UINT16 Output Conditions Positioning Completion UINT16 Threshold Positioning close to the UINT16 threshold Retain 0 UINT16 Zero return mode selection UINT16 High-speed search speed UINT16 of home switch signal speed search UINT16...
  • Page 154  F02 Speed Loop Function Group unit (of indexing subindex name data type causality mappable measure) Speed command source UINT16 Speed command UINT16 communication setpoint Speed command keypad UINT16 setpoint Tap speed setting value UINT16 Speed command UINT16 acceleration time constant Speed command UINT16...
  • Page 155 unit (of indexing subindex name data type causality mappable measure) (magnified 100 times) UINT16 Source of torque limitation Positive internal torque UINT16 limit Negative internal torque UINT16 limit Positive external torque UINT16 limit Negative external torque UINT16 limit Speed Limit Hysteresis UINT16 Speed Limit Delay Time UINT16...
  • Page 156  F05 DI parameter set unit (of indexing subindex name data type causality mappable measure) DI Function Assignment 1 UINT16 UINT16 DI Function Assignment 2 UINT16 DI Function Assignment 3 DI active level selection UINT16 Reservation 1 UINT16 braking time UINT16 Brake Waiting Speed UINT16...
  • Page 157  F06 DO parameter set unit (of indexing subindex name data type causality mappable measure) UINT16 DO function assignment UINT16 Reservation 1 Reservation 1 UINT16 Reservation 1 UINT16 Reservation 1 UINT16 DO output level selection UINT16 0x2006 Reservation 1 UINT16 reservations UINT16 reservations...
  • Page 158 unit (of indexing subindex name data type causality mappable measure) Torque coefficient UINT16 (magnified 100 times) Electrical constants (100x UINT16 magnification) Mechanical constants UINT16 (100x magnification) Maximum torque (100x UINT16 magnification) Reservation 1 UINT16 Motor number UINT16  F08 Communication parameter group unit (of indexing subindex...
  • Page 159 unit (of indexing subindex name data type causality mappable measure) Maximum blocking time UINT16 (ms) Drive temperature UINT16 protection point (0.1°) Undervoltage protection UINT16 point (0.1V) Overvoltage protection UINT16 point (0.1V) Braking into high (0.1V) UINT16 Braking into low point UINT16 (0.1V) Position...
  • Page 160  F10 Monitoring Parameter Group unit (of indexing subindex name data type causality mappable measure) UINT16 Feedback current (0.1A) UINT16 Command current (0.1A) Feedback speed (rpm) UNT16 Command speed (rpm) INT16 Feedback position 4 INT16 Feedback position 3 INT16 Feedback position 2 INT16 Feedback position 1 INT16...
  • Page 161 List of object group 6000h allocations The 6000h object group contains objects related to the supported subprotocol DSP 402. unit (of indexing subindex name data type causality mappable measure) 0x603F 0x00 ATTR_RO error code UINT16 0x6040 0x00 ATTR_RWW control letter UINT16 0x6041 0x00...
  • Page 162 unit (of indexing subindex name data type causality mappable measure) 0x6076 0x00 ATTR_RWW rated speed UINT32 0x6077 0x00 ATTR_RO Actual torque INT16 ● 0x6078 0x00 ATTR_RO Actual current INT16 0x607A 0x00 ATTR_RWW target location INT32 Position units ATTR_RO|ATT 0x00 Position range value UINT8 R_ROM Minimum Position Range...
  • Page 163 unit (of indexing subindex name data type causality mappable measure) R_ROM subindexes 0x01 ATTR_RW Speed factor 1 molecule UINT32 Speed Factor 0x02 ATTR_RW UINT32 Denominator ATTR_RO|ATT Number of velocity factor 0x00 UINT8 R_ROM 2 subindexes 0x6095 0x01 ATTR_RW Speed factor 2 molecule UINT32 Speed Factor...
  • Page 164: Chapter 八 Alarms And Handling

    unit (of indexing subindex name data type causality mappable measure) Displacement 2 Number of interpolation 0x00 ATTR_RO UINT8 ● time indexes 0x60C2 0x01 ATTR_RW interpolation time unit UINT8 ● 0x02 ATTR_RW interpolation time index UINT8 ● Interpolation cycle 0x60C3 0x00 ATTR_RO UINT8 definition...
  • Page 165 error code alarm message Possible causes Treatment Check and replace the Bad motor encoder cable encoder cable Err 03 Loss of encoder Z Replacement motor Motor encoder failure (encoder) Drive control board failure Replacement of drives Check parameter settings Drive software not properly and restore factory value Err 04 EEPROM error...
  • Page 166 error code alarm message Possible causes Treatment Replacement machine Encoder Failure Err 12 Recognizing HALL errors (encoder) Internal drive failure Replacement of drives U-phase current calibration Err 13 Internal drive failure Replacement of drives error V-phase current calibration Err 14 Internal drive failure Replacement of drives error...
  • Page 167 error code alarm message Possible causes Treatment Bad motor wiring Improved motor wiring Overload caused by poor Improvement transmission machinery transmission machinery drive failure Replacement of drives Short circuit between drive Modify wiring UVWs Incorrectly wired or poorly Modify wiring or replace contacted motor cables motor cable Short-circuit...
  • Page 168 error code alarm message Possible causes Treatment overflow revolutions reset zero point Check that the F7-01 and Parameters F7-01 Err30 power mismatch F18-00 settings F18-00 do not fit. correct. CAN communication error Check communication communication line wiring or turn off ratio abnormality function (F8-03=0) The MagicServo computer...
  • Page 169: List Of Other Alarm Displays

    8.2 List of other alarm displays cause of Possible causes Confirmation method cure damage Measurement voltage Control power not turned between main power Correct Wiring terminals L1C, L2C Input and output signals are Check the status of all signal Correct wiring of input incorrectly wired connections...
  • Page 170 Confirmation of sound and Replacement servo vibration near bearings motor Confirm that the input and Noise interference occurs output cable specifications because the cable used for meet requirements. cables that meet input and output signals is Cable specification: twisted specifications required pair or twisted shielded specifications.

Table of Contents