Advertisement

Quick Links

Operating Manual LCom
Lufft Communicator
Order No.: 8511.EAK
Version V2.18.1 (11/2019)
www.lufft.com

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the 8511.EAK and is the answer not in the manual?

Questions and answers

Summary of Contents for Lufft 8511.EAK

  • Page 1 Operating Manual LCom Lufft Communicator Order No.: 8511.EAK Version V2.18.1 (11/2019) www.lufft.com...
  • Page 2: Table Of Contents

    Contents 1 PLEASE READ BEFORE USE 1.1 S YMBOLS 1.2 S AFETY NSTRUCTIONS 1.3 D ESIGNATED 1.4 G UARANTEE 1.5 I NCORRECT 1.6 B RAND AMES 2 GENERAL 3 HARDWARE DESCRIPTION 3.1 P OWER UPPLY 3.2 O PERATION 3.3 GPRS M TCP/IP C ODEM ONNECTION FOR...
  • Page 3 5.6.1 V ALUE APPING 5.7 U TLS P PLINK YPE AND COMMON ARAMETER 5.7.1 TLS FG6 P ARAMETER 5.7.2 TLS LOKALBUS/INSELBUS P ARAMETER 5.7.3 TLS IP P ARAMETER 5.7.4 M FTP / TLS D FTP P ICKS ARAMETER 5.8 NTCIP NTCIP “OID ”...
  • Page 4 5.13.11 S MOOTHED SIMULATED WATER FILM HEIGHT 5.13.12 W AVETRONIX LICK 5.13.13 DGT RC A LARM 5.13.14 S TORM ETECTION 5.13.15 W ETECTION 5.13.16 D EWPOINT 5.14 T RS232 5.15 S OFTWARE PDATE EMOTE AINTENANCE 5.16 F PDATE 5.17 C OMMAND 5.18 E XAMPLES...
  • Page 5: Please Read Before Use

    1 Please Read Before Use Before using the equipment, please read the operating manual carefully and follow the instructions in every detail. 1.1 Symbols Used Important information about potential hazards to the user  Important information about correct equipment operation 1.2 Safety Instructions •...
  • Page 6: Brand Names

    • It may be permanently damaged • Danger of injury may exist if the equipment is allowed to fall If the equipment is not connected correctly • It may not function • It may be permanently damaged • The possibility of an electrical shock may exist 1.6 Brand Names All brand names referred to are subject without limitation to the valid trademark and ownership rights of the respective owner.
  • Page 7: General

    2 General The introduction of UMB technology has enabled Lufft to offer low cost sensors for road traffic technology. UMB sensors can be combined using ISOCON modules and additional analog sensors can be integrated with the ANACON module. The LCom - Lufft Communicator – was developed to provide the UMB sensor data over various communication protocols.
  • Page 8: Hardware Description

    3 Hardware Description RESET Ethernet CON220-1/Pin1 CON220-2/Pin1 LCom Connector 3.1 Power Supply LCom is powered via UB+/GND (CON220-1) on the UMB-EAK. The allowed voltage range is 10VDC to 28VDC. The input is protected against reverse polarity, surge and burst. Power supply for the GPRS modem (GUB_2/GND) and Party-Line modem (GUB_3/GND) are provided on connector CON220-1.
  • Page 9: Gprs Modem

    3.3 GPRS Modem Connection for Wireless TCP/IP Connections, and Analog Modem for PPP-Dial In Connections. The supported modem for GPRS Connections is: Wavecom Fastrack GPRS Modem. Serial port settings are 115200 baud, 8 data bits, no parity, 1 stop bit, RTS/CTS hardware handshake enabled.
  • Page 10: Party-Line Modem

    3.4 Party-Line Modem Connection LOGEM1200 (Keymile) and TD-23 (Westermo) modems are supported. Interface settings: 1200 baud, 8 data bits, even parity, 1 stop bit, RTS/CTS/DCD hardware handshake enabled. Alternative modems can be tested on request. LCom Connection Party-Line Modem RXD_MOD (CON220-2/Pin 5) RS232 RXD (Pin 2) TXD_MOD (CON220-2/Pin 6)
  • Page 11: Umb Connection

    3.5 UMB Connection The data connection and power supply are provided over the UMB connection. Please note that the maximum current on the LCom’s power supply output is 4 amp. If higher currents are required, the sensor heater must be powered and protected separately.
  • Page 12: Pin Assignment Con220-1

    3.8 Pin Assignment CON220-1 and CON220-2 CON220-1 Name Comment Positive power supply of EAK, 10V... 28V Ground GUB_1 Switched UMB power supply Ground A-RS485 for UMB communication B-RS485 for UMB communication RXD1 GPRS or Analog modem connection, Receive line TXD1 GPRS or Analog modem connection, Transmit line RTS1 GPRS or Analog modem connection, Ready to send...
  • Page 13: Storage Conditions

    10 DCD_MOD Data modem connection (TLS/Party Line), Data carrier detect, Input 3.9 Storage Conditions Allowable ambient temperature : -30°C... +70°C Allowable relative humidity : 95%, non-condensing 3.10 Operating Conditions Allowable operating temperature : -25°C... +70°C Allowable relative humidity : 95%, non-condensing 3.11 Technical Data Power supply : 10V...28V...
  • Page 14: Ec Certificate Of Conformity

    Product: LCom Type: 8511.EAK We herewith certify that the above mentioned equipment complies in design and construction with the Directives of the European Union and specifically the EMC Directive in accordance with 89/336/EC and the Low Voltage Directive in accordance with 73/23/EC.
  • Page 15: Software Description

    Snmp_mibii.dll – the SNMP agent for “MIB-II” functions (Microsoft) Ftpd.dll – the FTP server (Microsoft) SnmpNtcipAgent_Vx.x.dll – the SNMP agent for NTCIP functions (Lufft) The “Start.cmd” file must be copied to the \FFSDISK\Startup directory. This command file copies the “LCom.exe” file from the \FFSDISK directory to “\” (i.e.
  • Page 16: Getting Started

    Note: A user name and password are required for access to the system via Telnet, or for access to all configuration dialogs on the LCom: User name: lufft Password: lufft-lcom Some settings via the Windows CE control panel also require this password.
  • Page 17: User Interface

    5.3 User Interface Only the first two dialogs, “Status Display” and “Log File”, are generally available. A user name and password is required for all other dialogs. User name: lufft Password: lufft-lcom The user is “logged out” if the screensaver is enabled.
  • Page 18: Status Display

    5.4 Status Display This dialog is displayed as the default. The status of the active sensors, including the most recent measurements, is displayed together with the general system status (UMB and Uplink communication). If a sensor value is converted by scaling or value mapping (see below), the calculated value and the original value (in brackets) are shown.
  • Page 19: Log File

    5.5 Log File By clicking the “Refresh” button, the last 200 entries in the error log are displayed. Save to Disk/USB: saves the error log file(s) to the internal “nonvolatile” memory (e.g. for error analysis). If an USB stick is present, the file(s) can be saved to the USB stick as well...
  • Page 20: Sensor Configuration

    5.6 Sensor Configuration This dialog displays all channels of the attached UMB devices. Inactive channels are shown in gray, active channels in black. Active channels are displayed at the top of the list. After starting the application for the first time it may take some time for the system to read the configuration of all UMB devices.
  • Page 21 The following attributes can be configured for each sensor channel: • Sensor/channel active/inactive (Attention: see note below) • Name: The name displayed in LCom • Scale: scale factor for the value reported by the UMB device • Uplink-Protocol parameter for this sensor channel, e.g. for TLS: o TLS FG: The function group (3 or 6) o TLS Type: The TLS type o TLS Channel: The TLS channel...
  • Page 22 o Avg: the average value over all values in the “reporting interval” is calculated o Sum: the sum value over all values in the “reporting interval” is calculated o Min: the minimum value over all values in the “reporting interval” is calculated o Max: the maximum value over all values in the “reporting interval”...
  • Page 23 Type 49: temperature control Type 50: light Type 51: (standard) power supply Type 52: heating Type 53: ventilation Type 54: surge protection Type 55: theft/vandalism Mapping of the “source” values from the assigned UMB sensor channel to the appropriate TLS coding for each type may have to be done by configuring an appropriate value mapping for the sensor.
  • Page 24 5.6.1 Value Mapping Value mapping allows coded values, such as road condition and precipitation type, to be converted or adjusted. Furthermore, an offset (for additional calibration of a measurement, or unit conversion) and further scaling of the value can also be performed here.
  • Page 25 5.7 Uplink-Type and common TLS Parameter The parameters for the Uplink protocol are configured via “Uplink”. At present “TLS” (TC 57), “TLSoIP”, “NTCIP” and “Micks FTP” are supported. If NTCIP is selected, all TLS parameters are disabled. The parameters for NTCIP are set in the dedicated “NTCIP”...
  • Page 26 • GEO data: Country code / Street Code /Street Number / Street Km and Direction according to TLS type 36. • UMB error in DE-14 tel.: If the UMB device reports an error value, this parameter can be used to control whether the error byte should be included as an additional “manufacturer specific”...
  • Page 27 5.7.2 TLS LOKALBUS/INSELBUS Parameter TLS TC57/Inselbus/AUSA parameters: The timing parameters for Inselbus communication are site and line-dependent and must be adjusted if necessary. • Wait time: The time waited after receiving an error-free telegram before sending the next telegram (response). •...
  • Page 28 5.7.3 TLSoIP Parameter Parameters for TLSoIP according to the TLSoIP Specification (AsfinAG). At the moment only the “bidirectional connection” with a permanent connection to the server is supported. • C_ConnectDuration: Not used (for “unidirectional connection” only) • C_ConnectDelay: Not used (for “unidirectional connection” only) •...
  • Page 29 • Min. Modem Reset Interval: minimum time interval between GPRS modem resets on communication errors. 5.7.4 Micks FTP / TLS Dump Over FTP Parameter Parameters for the file transfer in “Micks data format” via FTP • Ftp host: the ip address or server name for the ftp host •...
  • Page 30 connection is made via LAN interface so that the TLSoIP connection does not wait for the GPRS connection to be established. • Min. Modem Reset Interval: minimum time interval between GPRS modem resets on communication errors. Note: as it is not possible to synchronize the LCom clock via FTP, it is recommended to use an NTP Server to synchronize the LCom clock (see Server) After changes to the uplink configuration the communication is interrupted briefly and...
  • Page 31 5.8 NTCIP LCom supports NTCIP via SNMP over LAN (Ethernet). The STMP protocol layer is not supported. In order to use NTCIP protocol with the LCom, the LCom must be connected via LAN to the server. A GPRS/CDMA router/gateway can be used to connect the LCom indirectly to the server/internet.
  • Page 32 The LCom’s network configuration is maintained via the Windows CE control panel (can also be started via the LCom system settings and “Control Panel” button). Note that changes made via the Control Panel to the Network Connection (the LAN Adapter is the DM9CE1 device) are NOT stored permanently unless the registry (where these values are stored) is saved.
  • Page 33 The LCom will hide (not support) OIDs that are specific to “mobile stations” if the configuration parameter “support mobile station oids” is not set (which is the default). The LCom will hide (not support) OIDs that are specific to “staffed stations” if the configuration parameter “support staffed station oids”...
  • Page 34 5.8.2 Configuration The “Ntcip” dialog on the LCom (or via the service program) is used to configure the NTCIP protocol parameters. The input fields of this dialog are only enabled if “Ntcip” is selected as the protocol in the “Uplink” dialog. Note: The number of entries in the related tables, i.e.
  • Page 35 5.8.2.1 NTCIP Agent Parameters: • DLL Name: The name of the DLL. As the system calls up this file on startup (and the .dll is in use all the time), a new file name must be used when updating to a new version (because the existing file cannot be overwritten as it is “in use”).
  • Page 36 (which is the default), the NTCIP version 2 definition is used (see OID list below for details). • Precipitation Yes/No Limit: Parameter for determining “Precipitation” yes/no (see table below) • Radiation Daylight Limit: Parameter for determining “Day/Night” (see table below) •...
  • Page 37 You can configure the entries for the “Global Module Table” here. Note: this table is for documentation/information purposes only. 5.8.2.3 Security...
  • Page 38 Here you can configure the entries in the SNMP security table that control the access to the SNMP protocol stack. Note: Changes cause a system reboot (after saving the changes). 5.8.2.4 winSensorTable Here you can configure the name and height of the wind sensors – the number of entries specifies the number of wind sensors reported by the LCom.
  • Page 39 5.8.2.5 essTemperatureSensorTable The height for each temperature sensor (and thereby the number of sensors) is configured here. 5.8.2.6 waterLevelSensorTable...
  • Page 40 The number of “water level” sensors is configured here (there are no configuration parameters for a water level sensor). 5.8.2.7 essPavementSensorTable The various configuration parameters for the road sensors are configured here.
  • Page 41 5.8.2.8 essSubSurfaceSensorTable The parameters for the subsurface temperature sensors are configured here.
  • Page 42 5.8.2.9 essSnapShotCameraTable The camera(s) is/are configured here. See Camera Support below.
  • Page 43 5.8.2.10 Sensor Assignment The corresponding sensors are assigned to the SNMP OIDs here. In the case of NTCIP sensors (OIDs) which are calculated from more than one input sensors, a corresponding number of device sensors are assigned (see table below). The “Ntcip Scale Factor”...
  • Page 44 scaling and/or value mapping performed earlier through the LCom sensor configuration. Usually the “Ntcip Scale Factor” is sufficient to convert the “original” values as reported by the UMB device to the relevant “NTCIP encoding” of the value. 5.8.2.11 If “Support TSS” has been activated in the NTCIP Agent Settings, the TSS sensor zones can be configured here.
  • Page 45 For every zone/lane, the “sensorZoneSamplePeriod” – which is the time interval used to report the data under “tss.tssDataCollection” in the “dataCollectionTable” and “dataBufferTable” – and a label for the zone/lane can be configured. Note that the sensorZoneSamplePeriod is limited to the following time intervals: 60 = 1 minute 120 = 2 minutes 180 = 3 minutes...
  • Page 46 Setting a value other than the listed values will set the sensorZoneSamplePeriod to the closest listed value. Note that the time period calculation in the LCom is always done “aligned”, i.e. all listed time periods will be calculated from the beginning of the full hour (e.g. 6 Minute intervals always start at xx:00:00, xx:06:00, xx:12:00, xx:18:00, xx:24:00, xx:30:00, xx:36:00, xx:42:00, xx:48:00, xx:54:00 etc.) 5.8.2.12...
  • Page 47 • numDGTRoadConditionAlarmCodeEntries: number of DGT Road Condition alarm code entries in the respective table. • numSandStormDetectionEntries: number of Sand Storm Detection results in the respective table. • numWetSpotDetectionEntries: number of Wet Spot Detection results in the respective table. • numBatteries: number of batteries in the instrumentation.batteryStatus table (see next chapter) •...
  • Page 48 The nonInvasiveRoadSensorTable is used to configure the number of NIR Sensors. Besides the actual sensor values (see next chapter), height and location can be configured for each NIRS. The same applies to the passive and activeRoadSensorTable.
  • Page 49 5.8.2.12.2 historySensorOidTable Here, the OIDs for the NTCIP data store are configured. On the left side, all OIDs that have a sensor assignment (i.e. should report measure values) and that have not been configured for the data store are listed. On the right side the OIDs already configured for the data store are shown.
  • Page 50 Valid statistics types are • Avg: average value • Sum: sum value • Min: minimum value • Max: maximum value • Mod: modal value (used for “coded” values like precipitation type or road condition, reports the value most often used in the respective time interval) •...
  • Page 51 5.8.3 NTCIP SNMP OIDs 5.8.3.1 iso.org.dod.internet.mgmt The standard “Mib II” and “Hostmib” OIDs (provided through the Windows CE SNMP framework) are supported, including the OIDs as required by NTCIP 2104:2003 / RFC 1213.mib. 5.8.3.2 iso.org.dod.internet.private.enterprises.nema.nemaPrivate All manufacturer specific sensor/measure values are reported under this subtree under node 50 (which has been assigned by Nema to informatikWerkstatt).
  • Page 52 Lufft road sensors (Non-Invasive Road Sensor (NIRS), passive road sensor (IRS31/IRS31Pro), active road sensors (ARS31)) and allows to report all UMB sensor channels of the respective UMB sensor type in the iso.org.dod.internet.private.enterprises.nema.nemaPrivate.informatikWerkstatt.sensorData.roadSensors = .1.3.6.1.4.1.1206.3.50.1.1 subtree roadSensors.numNonInvasiveRoadSensors.0...
  • Page 53 roadSensors.nonInvasiveRoadSensorTable.nonInvasiveRoadSensorEntry.nirsEnergyConsumptionRatio.x .1.3.6.1.4.1.1206.3.50.1.1.2.1.18.x NIRS UMB Channel 4004 roadSensors.numPassiveRoadSensors.0 .1.3.6.1.4.1.1206.3.50.1.1.3.0 Configurable roadSensors.passiveRoadSensorTable.passiveRoadSensorEntry.prsIndex.x .1.3.6.1.4.1.1206.3.50.1.1.4.1.1.x roadSensors.passiveRoadSensorTable.passiveRoadSensorEntry.prsHeight.x .1.3.6.1.4.1.1206.3.50.1.1.4.1.2.x Configurable roadSensors.passiveRoadSensorTable.passiveRoadSensorEntry.prsLocation.x .1.3.6.1.4.1.1206.3.50.1.1.4.1.3.x Configurable Transmitted in 1/10 °C – roadSensors.passiveRoadSensorTable.passiveRoadSensorEntry.prsSurfaceTemperature.x .1.3.6.1.4.1.1206.3.50.1.1.4.1.4.x scale factor 10 Transmitted in 1/10 °C – roadSensors.passiveRoadSensorTable.passiveRoadSensorEntry.prsExternalTemperature1.x .1.3.6.1.4.1.1206.3.50.1.1.4.1.5.x scale factor 10 Transmitted in 1/10 °C – roadSensors.passiveRoadSensorTable.passiveRoadSensorEntry.prsExternalTemperature2.x .1.3.6.1.4.1.1206.3.50.1.1.4.1.6.x scale factor 10...
  • Page 54 roadSensors.activeRoadSensorTable.activeRoadSensorEntry.arsSalineConcentrationMgCl2.x .1.3.6.1.4.1.1206.3.50.1.1.6.1.9.x roadSensors.activeRoadSensorTable.activeRoadSensorEntry.arsSalineConcentrationCaCl2.x .1.3.6.1.4.1.1206.3.50.1.1.6.1.10.x roadSensors.activeRoadSensorTable.activeRoadSensorEntry.arsCryotechE36ConcentrationByWeight.x .1.3.6.1.4.1.1206.3.50.1.1.6.1.11.x roadSensors.activeRoadSensorTable.activeRoadSensorEntry.arsCryotechE36ConcentrationByVolume.x .1.3.6.1.4.1.1206.3.50.1.1.6.1.12.x roadSensors.activeRoadSensorTable.activeRoadSensorEntry.arsSafewayKFHotConcentration.x .1.3.6.1.4.1.1206.3.50.1.1.6.1.13.x roadSensors.activeRoadSensorTable.activeRoadSensorEntry.arsSalineConcentrationNaClCorrected.x .1.3.6.1.4.1.1206.3.50.1.1.6.1.14.x roadSensors.activeRoadSensorTable.activeRoadSensorEntry.arsSalineConcentrationMgCl2Corrected.x .1.3.6.1.4.1.1206.3.50.1.1.6.1.15.x roadSensors.activeRoadSensorTable.activeRoadSensorEntry.arsSalineConcentrationCaCl2Corrected.x .1.3.6.1.4.1.1206.3.50.1.1.6.1.16.x roadSensors.activeRoadSensorTable.activeRoadSensorEntry.arsCryotechE36ConcentrationByWeightCorrected.x .1.3.6.1.4.1.1206.3.50.1.1.6.1.17.x roadSensors.activeRoadSensorTable.activeRoadSensorEntry.arsCryotechE36ConcentrationByVolumeCorrected.x .1.3.6.1.4.1.1206.3.50.1.1.6.1.18.x roadSensors.activeRoadSensorTable.activeRoadSensorEntry.arsSafewayKFHotConcentrationCorrected.x .1.3.6.1.4.1.1206.3.50.1.1.6.1.19.x roadSensors.activeRoadSensorTable.activeRoadSensorEntry.arsStatusMeasurement.x .1.3.6.1.4.1.1206.3.50.1.1.6.1.20.x roadSensors.activeRoadSensorTable.activeRoadSensorEntry.arsMeasureCounter.x .1.3.6.1.4.1.1206.3.50.1.1.6.1.21.x 5.8.3.2.2 sensorData.calcChannels subtree in this subtree OIDs to transmit the road condition, bridge deck alarm and DGT road condition alarm code are supported Boschung Alarm Code calcChannels.roadConditionAlarmCode.0 .1.3.6.1.4.1.1206.3.50.1.2.1.0...
  • Page 55 5.8.3.2.3 sensorData.digitalOutputStatus subtree this subtree contains a table to show the status of the digital outputs (e.g. used to control traffic signals) configured as “alarm” outputs. Configuration and status data is directly derived from the alarm configuration, so no sensor channels are assigned to these OIDs. digitalOutputStatus.numDigitalOutputPorts.0 .1.3.6.1.4.1.1206.3.50.1.3.1.0 Configurable...
  • Page 56 instrumentation.batteryStatusTable.batteryStatusEntry.batteryStatusIndex.x .1.3.6.1.4.1.1206.3.50.1.4.4.1.1.x instrumentation.batteryStatusTable.batteryStatusEntry.batteryVoltage.x .1.3.6.1.4.1.1206.3.50.1.4.4.1.2.x battery votage in mV instrumentation.batteryStatusTable.batteryStatusEntry.batteryChargeVoltage.x .1.3.6.1.4.1.1206.3.50.1.4.4.1.3.x battery charge voltage in mV instrumentation.batteryStatusTable.batteryStatusEntry.batteryChargeStatus.x .1.3.6.1.4.1.1206.3.50.1.4.4.1.4.x battery charge status in % instrumentation.numDoors.0 .1.3.6.1.4.1.1206.3.50.1.4.5.0 Configurable instrumentation.doorStatusTable.doorStatusEntry.doorStatusIndex.x .1.3.6.1.4.1.1206.3.50.1.4.6.1.1.x door status 0 = closed instrumentation.doorStatusTable.doorStatusEntry.doorStatus.x .1.3.6.1.4.1.1206.3.50.1.4.6.1.2.x 1 = open 2 = error or missing value 5.8.3.2.5 sensorData.environmentalSensors Subtree here the “native”...
  • Page 57 environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosIndex. .1.3.6.1.4.1.1206.3.50.1.5.4.1.1.x Transmitted in 1/10 °C – scale environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosTemperature.x .1.3.6.1.4.1.1206.3.50.1.5.4.1.2.x factor 10 Transmitted in 1/10 °C – scale environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosExternalTemperature.x .1.3.6.1.4.1.1206.3.50.1.5.4.1.3.x factor 10 Transmitted in 1/10 °C – scale environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosDewPoint.x .1.3.6.1.4.1.1206.3.50.1.5.4.1.4.x factor 10 Transmitted in 1/10 °C – scale environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosWindChillTemperature.x .1.3.6.1.4.1.1206.3.50.1.5.4.1.5.x factor 10 Transmitted in 1/10 °C –...
  • Page 58 environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosPrecipitationType.x .1.3.6.1.4.1.1206.3.50.1.5.4.1.27.x Transmitted in 1/10 – scale factor environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosPrecipitationIntensity.x .1.3.6.1.4.1.1206.3.50.1.5.4.1.28.x environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosGlobalRadiation.x .1.3.6.1.4.1.1206.3.50.1.5.4.1.29.x environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosFlashEventsPerMinute.x .1.3.6.1.4.1.1206.3.50.1.5.4.1.30.x environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosFlashEventsPerInterval.x .1.3.6.1.4.1.1206.3.50.1.5.4.1.31.x environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosLeafWettnessmV.x .1.3.6.1.4.1.1206.3.50.1.5.4.1.32.x environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosLeafWettnessStatus.x .1.3.6.1.4.1.1206.3.50.1.5.4.1.33.x environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosOperatingPower.x .1.3.6.1.4.1.1206.3.50.1.5.4.1.34.x environmentalSensors.allInOneSensorTable.allInOneSensorEntry.aiosPrecipitationDropSize.x .1.3.6.1.4.1.1206.3.50.1.5.4.1.35.x 5.8.3.2.6 rpuConfiguration subtree this subtree provides configuration information for the rpu – consting of an OID for the current private MIB Version, and a table reporting all OIDs that have a sensor assigned, i.e.
  • Page 59 Number of Sensor OIDs configured dataStore.numHistorySensorEntries.0 .1.3.6.1.4.1.1206.3.50.3.2.0 Configurable for the data store dataStore.historySensorTable.historySensorEntry.historySensorTableIndex.x .1.3.6.1.4.1.1206.3.50.3.3.1.1.x dataStore.historySensorTable.historySensorEntry.historySensorOid.x .1.3.6.1.4.1.1206.3.50.3.3.1.2.x dataStore.historySensorTable.historySensorEntry.historySensorStatisticsType.x .1.3.6.1.4.1.1206.3.50.3.3.1.3.x Reporting interval in minutes. dataStore.reportingInterval.0 .1.3.6.1.4.1.1206.3.50.3.4.0 Read/write Defaults to 1 minute Start time (UTC timestamp). Defaults to 0, i.e. 255 “reporting dataStore.queryStartTime.0 .1.3.6.1.4.1.1206.3.50.3.5.0 intervals”...
  • Page 60 hseIceSight.hseIceSightTable.hseIceSightEntry.hseIceSightSfcDirtyLens.X .1.3.6.1.4.1.1206.3.51.4.1.2.1.7.X 5.8.3.3 iso.org.dod.internet.private.enterprises.nema.transportation.devices.tss All traffic sensor/measure values are reported under this subtree (if “Support TSS” is active). Following list shows all objects (OIDs) as defined by the NTCIP standard for TSS (1209_V0119f.pdf). • OIDs which represent measurements are shown in bold. •...
  • Page 61 Source Sensor OID (String) OID (Numeric) Remarks Assignment tss.tssSystemSetup.sensorSystemReset.0 .1.3.6.1.4.1.1206.4.2.4.1.1.0 read/write. Note: only command "restart (1)" is supported ! tss.tssSystemSetup.sensorSystemStatus.0 .1.3.6.1.4.1.1206.4.2.4.1.2.0 tss.tssSystemSetup.sensorSystemOccupancyType.0 .1.3.6.1.4.1.1206.4.2.4.1.3.0 fixed value ! (write operation not supported) tss.tssSystemSetup.maxSensorZones.0 .1.3.6.1.4.1.1206.4.2.4.1.4.0 fixed value ! (write operation not supported) tss.tssSystemSetup.sensorZoneTable.sensorZoneEntry.sensorZoneNumber.x .1.3.6.1.4.1.1206.4.2.4.1.5.1.1.x tss.tssSystemSetup.sensorZoneTable.sensorZoneEntry.sensorZoneOptions.x .1.3.6.1.4.1.1206.4.2.4.1.5.1.2.x...
  • Page 62 Wavecon channel tss.tssDataCollection.dataCollectionTable.dataCollectionEntry.endTime.x .1.3.6.1.4.1.1206.4.2.4.3.1.1.1.x 5002,5003 or 5004 Wavecon channel 5002 tss.tssDataCollection.dataCollectionTable.dataCollectionEntry.volumeData.x .1.3.6.1.4.1.1206.4.2.4.3.1.1.2.x traffic data (counter) Wavecon channel 5004 tss.tssDataCollection.dataCollectionTable.dataCollectionEntry.percentOccupancy.x .1.3.6.1.4.1.1206.4.2.4.3.1.1.3.x avg. occupancy (scale factor 10) (%) Wavecon channel 5003 tss.tssDataCollection.dataCollectionTable.dataCollectionEntry.speedData.x .1.3.6.1.4.1.1206.4.2.4.3.1.1.4.x avg. speed (scale factor 10) km/h Wavecon channel tss.tssDataCollection.dataCollectionTable.dataCollectionEntry.zoneStatus.x .1.3.6.1.4.1.1206.4.2.4.3.1.1.5.x 5002,5003 or 5004 Wavecon channel...
  • Page 63 For measurement values which require “value mapping” (e.g. road condition), a default value mapping is used (e.g. “Road Condition Lufft (def) to NTCIP”) if no other value mapping is set for the corresponding sensor in the LCom sensor configuration. The default value mappings can be freely configured and changed –...
  • Page 64 ess.essBufr.essBufrWind.essMaxWindGustSpeed.0 .1.3.6.1.4.1.1206.4.2.5.1.11.41.0 Deprecated Wind Speed (max) ess.essBufr.essBufrWind.essMaxWindGustDir.0 .1.3.6.1.4.1.1206.4.2.5.1.11.43.0 Deprecated Wind Direction (max) ° ess.essBufr.essBufrPrecip.essRelativeHumidity.0 .1.3.6.1.4.1.1206.4.2.5.1.13.3.0 Relative Humidity (act) % ess.essBufr.essBufrPrecip.essPrecipRate.0 .1.3.6.1.4.1.1206.4.2.5.1.13.14.0 Precipitation Intensity (mm/h) -> scale UMB Sensor from 1/10 mm/h to tenths of grams per square meter per second (for rain, this is approximately to 0.36 mm/hr) ! ess.essBufr.essBufrPrecip.essSnowfallAccumRate.0...
  • Page 65 ess.essBufr.essBufrPrecip.essPrecipitation24Hours.0 .1.3.6.1.4.1.1206.4.2.5.1.13.23.0 Precipitation diff (mm) ess.essBufr.essBufrRadiation.essInstantaneousTerrestrialRadiation.0 .1.3.6.1.4.1.1206.4.2.5.1.14.17.0 Solar Radiation (w/m²) ess.essBufr.essBufrRadiation.essInstantaneousSolarRadiation.0 .1.3.6.1.4.1.1206.4.2.5.1.14.18.0 Solar Radiation (w/m²) ess.essBufr.essBufrRadiation.essSolarRadiation.0 .1.3.6.1.4.1.1206.4.2.5.1.14.24.0 Deprecated Solar Radiation (J/m²) ess.essBufr.essBufrRadiation.essTotalRadiation.0 .1.3.6.1.4.1.1206.4.2.5.1.14.25.0 Solar Radiation (w/m²) – average over last 24 hours above “Radiation Daylight Limit” ess.essBufr.essBufrRadiation.essTotalSun.0 .1.3.6.1.4.1.1206.4.2.5.1.14.31.0 Source Sensor should indicate “Sunlight”.
  • Page 66 ess.essNtcip.essNtcipLocation.essLongitude.0 .1.3.6.1.4.1.1206.4.2.5.2.2.2.0 Configurable ess.essNtcip.essNtcipLocation.essVehicleSpeed.0 .1.3.6.1.4.1.1206.4.2.5.2.2.3.0 Mobile Station ess.essNtcip.essNtcipLocation.essVehicleBearing.0 .1.3.6.1.4.1.1206.4.2.5.2.2.4.0 Mobile Station ess.essNtcip.essNtcipLocation.essOdometer.0 .1.3.6.1.4.1.1206.4.2.5.2.2.5.0 Mobile Station ess.essNtcip.essNtcipHeight.essReferenceHeight.0 .1.3.6.1.4.1.1206.4.2.5.2.3.1.0 Configurable ess.essNtcip.essNtcipHeight.essPressureHeight.0 .1.3.6.1.4.1.1206.4.2.5.2.3.2.0 Configurable ess.essNtcip.essNtcipHeight.essWindSensorHeight.0 .1.3.6.1.4.1.1206.4.2.5.2.3.3.0 Configurable/ Deprecated ess.essNtcip.essNtcipWind.essSpotWindDirection.0 .1.3.6.1.4.1.1206.4.2.5.2.4.1.0 Deprecated Wind Direction (°) act ess.essNtcip.essNtcipWind.essSpotWindSpeed.0 .1.3.6.1.4.1.1206.4.2.5.2.4.2.0 Deprecated Wind Speed (m/s) act ess.essNtcip.essNtcipWind.essSpotWindSituation.0 .1.3.6.1.4.1.1206.4.2.5.2.4.3.0 Deprecated / Staffed Station...
  • Page 67 .1.3.6.1.4.1.1206.4.2.5.2.6.5.0 Precipitation diff (mm) or Precipiation Intensity (mm/h) – compared to “Precipitation Yes/No Limit” ess.essNtcip.essNtcipPrecip.essPrecipSituation.0 .1.3.6.1.4.1.1206.4.2.5.2.6.6.0 Precipitation Type (Lufft) or value mapped to NTCIP Precipitation Intensity (mm/h) ess.essNtcip.essNtcipPrecip.essIceThickness.0 .1.3.6.1.4.1.1206.4.2.5.2.6.7.0 Ice Thickness (mm) ess.essNtcip.essNtcipPrecip.essPrecipitationStartTime.0 .1.3.6.1.4.1.1206.4.2.5.2.6.8.0 Precipitation diff (mm) or Precipiation...
  • Page 68 compared to “Precipitation Yes/No Limit” ess.essNtcip.essNtcipPrecip.essPrecipitationEndTime.0 .1.3.6.1.4.1.1206.4.2.5.2.6.9.0 Precipitation diff (mm) or Precipitation Intensity (mm/h) – compared to “Precipitation Yes/No Limit” ess.essNtcip.essNtcipPrecip.precipitationSensorModelInformation.0 .1.3.6.1.4.1.1206.4.2.5.2.6.10.0 Configurable ess.essNtcip.essNtcipPrecip.waterLevelSensorTableNumSensors.0 .1.3.6.1.4.1.1206.4.2.5.2.6.11.0 Configurable …waterLevelSensorTable.waterLevelSensorEntry.waterLevelSensorIndex.x .1.3.6.1.4.1.1206.4.2.5.2.6.12.1.1.x Table Index …waterLevelSensorTable.waterLevelSensorEntry.waterLevelSensorReading.x .1.3.6.1.4.1.1206.4.2.5.2.6.12.1.2.x Water Level (cm) ess.essNtcip.essNtcipRadiation.essCloudSituation.0 .1.3.6.1.4.1.1206.4.2.5.2.7.1.0 Cloud Situation / Ceilometer –...
  • Page 69 …essPavementSensorTable.essPavementSensorEntry.essPavementElevation.x .1.3.6.1.4.1.1206.4.2.5.2.9.2.1.4.x Configurable …essPavementSensorTable.essPavementSensorEntry.essPavementExposure.x .1.3.6.1.4.1.1206.4.2.5.2.9.2.1.5.x Configurable …essPavementSensorTable.essPavementSensorEntry.essPavementSensorType.x .1.3.6.1.4.1.1206.4.2.5.2.9.2.1.6.x Configurable …essPavementSensorTable.essPavementSensorEntry.essPavementSurfaceStatus.x .1.3.6.1.4.1.1206.4.2.5.2.9.2.1.7.x Road Condition (Lufft) or mapped to NTCIP coding …essPavementSensorTable.essPavementSensorEntry.essSurfaceTemperature.x .1.3.6.1.4.1.1206.4.2.5.2.9.2.1.8.x Surface Temperature (°C) …essPavementSensorTable.essPavementSensorEntry.essPavementTemperature.x .1.3.6.1.4.1.1206.4.2.5.2.9.2.1.9.x Pavement Temperature (°C) …essNtcipPavement.essPavementSensorTable.essPavementSensorEntry.essSurfaceWaterDepth.x .1.3.6.1.4.1.1206.4.2.5.2.9.2.1.10.x Deprecated Water Depth (µm) …essPavementSensorTable.essPavementSensorEntry.essSurfaceSalinity.x .1.3.6.1.4.1.1206.4.2.5.2.9.2.1.11.x Salinity in % (scaled by 1000 to convert to “parts per 100.000...
  • Page 70 …essSubSurfaceSensorTable.essSubSurfaceSensorEntry.essSubSurfaceTemperature.x .1.3.6.1.4.1.1206.4.2.5.2.9.4.1.5.x Sub Surface Temperature (°C) …essSubSurfaceSensorTable.essSubSurfaceSensorEntry.essSubSurfaceMoisture.x .1.3.6.1.4.1.1206.4.2.5.2.9.4.1.6.x Sub Surface or (NTCIP V1 essSubSurfaceSensorEntry) Moisture (%) .1.3.6.1.4.1.1206.4.2.5.2.9.4.1.7.x …essSubSurfaceSensorTable.essSubSurfaceSensorEntry.essSubSurfaceSensorError.x .1.3.6.1.4.1.1206.4.2.5.2.9.4.1.7.x Sub Surface or (NTCIP V1 essSubSurfaceSensorEntry) Temperature (°C) .1.3.6.1.4.1.1206.4.2.5.2.9.4.1.8.x (error condition is derived from sensor value) ess.essNtcip.essNtcipPavement.essPavementBlock.0 .1.3.6.1.4.1.1206.4.2.5.2.9.5.0 Not Supported ess.essNtcip.essNtcipPavement.essSubSurfaceBlock.0 .1.3.6.1.4.1.1206.4.2.5.2.9.6.0 Not Supported ess.essNtcip.essNtcipMobile.essMobileFriction.0...
  • Page 71 ess.essNtcip.essNtcipInstrumentation.essDoorStatus.0 .1.3.6.1.4.1.1206.4.2.5.2.15.1.0 Door Contact (logic) ess.essNtcip.essNtcipInstrumentation.essBatteryStatus.0 .1.3.6.1.4.1.1206.4.2.5.2.15.2.0 Battery Status (%) ess.essNtcip.essNtcipInstrumentation.essLineVolts.0 .1.3.6.1.4.1.1206.4.2.5.2.15.3.0 Line Volts (V) ess.essNtcip.essNtcipInstrumentation.essStationMetaDataBlock.0 .1.3.6.1.4.1.1206.4.2.5.2.15.4.0 Not Supported ess.essNtcip.essNtcipInstrumentation.essStationWeatherBlock.0 .1.3.6.1.4.1.1206.4.2.5.2.15.5.0 Not Supported ess.essNtcip.essNtcipInstrumentation.essMobileBlock.0 .1.3.6.1.4.1.1206.4.2.5.2.15.6.0 Mobile Station / Not Supported 5.8.3.5 iso.org.dod.internet.private.enterprises.nema.transportation.devices.global OID (String) OID (Numeric) Remarks global.globalConfiguration.globalSetIDParameter.0 .1.3.6.1.4.1.1206.4.2.6.1.1.0 Calculated global.globalConfiguration.globalMaxModules.0 .1.3.6.1.4.1.1206.4.2.6.1.2.0 Configurable...
  • Page 72 global.globalTimeManagement.timebase.dayPlanStatus.0 .1.3.6.1.4.1.1206.4.2.6.3.3.6.0 Always 0 global.globalTimeManagement.timebase.timeBaseScheduleTableStatus.0 .1.3.6.1.4.1.1206.4.2.6.3.3.7.0 Always 0 devices.global.globalTimeManagement.globalLocalTimeDifferential.0 .1.3.6.1.4.1.1206.4.2.6.3.4.0 Deprecated*** ! global.globalTimeManagement.controllerStandardTimeZone.0 .1.3.6.1.4.1.1206.4.2.6.3.5.0 Calculated global.globalTimeManagement.controllerLocalTime.0 .1.3.6.1.4.1.1206.4.2.6.3.6.0 Calculated global.globalReport.* .1.3.6.1.4.1.1206.4.2.6.4.* Not Supported global.security.communityNameAdmin.0 .1.3.6.1.4.1.1206.4.2.6.5.1.0 global.security.communityNamesMax.0 .1.3.6.1.4.1.1206.4.2.6.5.2.0 Configurable/10 …communityNameTable.communityNameTableEntry.communityNameIndex.x .1.3.6.1.4.1.1206.4.2.6.5.3.1.1.x Tab Index …communityNameTable.communityNameTableEntry.communityNameUser.x .1.3.6.1.4.1.1206.4.2.6.5.3.1.2.x …communityNameTable.communityNameTableEntry.communityNameAccessMask.x .1.3.6.1.4.1.1206.4.2.6.5.3.1.3 ** Note regarding the “global.security” subtree: •...
  • Page 73 5.8.4 Camera Support LCom supports the “recording of camera snapshots” as described in the NTCIP standard. All configuration settings for the snapshots (host name, port, user name, password etc.) can be set in the “essSnapshotCameraTable” configuration dialog. The picture is transferred from the camera via HTTP when the appropriate command is sent to the LCom via NTCIP (a “SET”...
  • Page 74 Manual LCom 5.8.5 NTCIP 1209 TSS Support for NTCIP 1209 TSS is (for now) limited to transmitting the traffic data under tss.tssDataCollection.dataCollectionTable and tss.tssdataCollection.dataBufferTable. The following values can be transmitted: volumeData(Buffer): the traffic volume / number of cars per time period percentOccupancy(Buffer): the average occupancy of the lane per time period speedData(Buffer): the average speed of the verhicles on the lane per time period These values correspond to the following Wavecon UMB channels:...
  • Page 75 Manual LCom If a sensor channel is assigned to one of the tssDataCollection.dataCollectionTable (or .dataBufferTable) OIDs in the sensor Assignment dialog, all OID’s of this table entry will be assigned appropriate sensor channels of the same Wavecon device (if no channels have been assigned yet). 5.8.6 NTCIP Data Store / History The dataStore MIB subtree (see chapter 5.8.3.2.7) provides access to the data stored on the rpu (note: this is a private extension of the NTCIP standard, and only...
  • Page 76 Manual LCom e) Read the resultsTable – dataStore.queryResultsTable.queryResultsEntry.rowMeasureT ime.x will provide the UTC timestamp of the measure values reported by the corresponding dataStore.queryResultsTable.queryResultsEntry.rowValues.x OID. f) Clear the result set (and query parameters) by writing a value of 7 (done) to the dataStore.queryCommandAndStatus.0 OID.
  • Page 77 Manual LCom Note: the bigger the value for the reporting interval is, and the more Sensor OIDs are configured for the data store, the longer it takes for the rpu to read and calculate the aggregated data for each OID (which is calculated depending on the statistics Type settings for the respective OID in the historySensors table).
  • Page 78 Manual LCom 5.9 MSSI The “MSSI” protocol was specified in co-operation with AsfinAG Austria, to provide an “open protocol” (based on open standards – SOAP, i.e. HTTP and XML) that not only allows to transfer measurement data from road weather stations and camera pictures within the AsfinAG Network, but allows the transfer of any measurement data in any unit without restrictions.
  • Page 79 Manual LCom 1.) The “measure interval” on the LCom is fixed at 1 minute and can not be changed. The measure interval on the LCom is the same for all channels (not on a “per sensor channel” basis). 2.) The “Storage Interval” on the LCom does not really refer to the interval in which the sensor values are stored in the ring memory (on the SD card).
  • Page 80 Manual LCom 5.9.1 MSSI Configuration The following parameters can be set for MSSI protocol: • Soap Reset Timeout: if no Soap/MSSI Request is received within the configured time interval, the Soap/MSSI protocol stack is reset. This is to handle a known problem that the MSSI protocol stack may “hang” sometimes (under unknown circumstances).
  • Page 81 • Station name: The name of the station (same as the station name that can be set under “System”). • Manufacturer: The manufacturer of the station (“Lufft”). • Measure interval: The measure interval according to the MSSI standard. Here: the polling interval for the UMB devices.
  • Page 82 Manual LCom measurement data memory must be configured and initialized (and thus allocated on the SD Card) before the first camera image is saved. • Transfer timeout: The timeout for the transmission of a camera image via MSSI. The transfer is canceled if there is no further action within this time period in relation to an initiated data transfer.
  • Page 83 Manual LCom 5.9.2 MSSI Sensor Types The sensor type (e.g. road condition, road surface temperature, air temperature etc.) is encoded as a numeric value in the MSSI protocol. Many sensor types are already pre-defined here – however there is an option to specify additional “user defined”...
  • Page 84 Manual LCom • Id: The unique camera ID (per station) • Name: The name of the camera • Host: TCP/IP address or DNS host name of the camera (camera server) • Port: TCP/IP port of the camera (camera server) • Use Ftp (not http): The camera image is transmitted from the camera (to the LCom) via FTP instead of http •...
  • Page 85 Manual LCom • FTP upload: The transmitted camera image is transferred to a server via FTP. FTP host/port/user/password: The access data to the FTP server for the upload. • FTP Timeout: timeout (in seconds) for the FTP communication. • Path. The directory on the FTP server in which the image is to be stored. If a directory name (no extension) is specified, then the remote filename is build using the specified directory name and the MSSI Camera filename (<mssi_station_id>_<mssi_camera_id>_<timestamp>.jpg).
  • Page 86 Manual LCom • NTP active: Time synchronization via NTP is active • NTP server via GPRS: The connection to the NTP server is established over the GPRS modem (if this flag is selected, the connection to the NTP server is only established after the GPRS connection has been established).
  • Page 87 Manual LCom The respective input channels must deliver a “logical” value for the respective condition, i.e. if the value for the corresponding channel = 0, this is interpreted as “No error” or “Door closed”; if the value is != 0, this is interpreted as “Error” or “Door open”.
  • Page 88 Manual LCom 5.10 Export Measurement data can be exported to a CSV file and uploaded to a server. Following parameters can be set: • CSV Separator: the csv separator (comma, semicolon or tab character) • Decimal point: the decimal point (point or comma) •...
  • Page 89 Manual LCom • Password: the user’s password • Timeout: transfer timeout in seconds • Server Dir: directory on the server (excluding the filename). Note: the directory name might contain tags that are replaced when the file is transferred (see below). The LCom will try to create the directory if it does not exists. •...
  • Page 90 Manual LCom Export Header Rows Multiple header rows can be configured if needed. Following header row types are supported: • Column Name: the name of the export column as configured for the column (see below) • Sensor Name: the name of the UMB sensor channel or NTCIP OID (if applicable) •...
  • Page 91 Manual LCom Following column types are supported: • Date: the date for the measurement (format as specified by date format above) • Time: the time for the measurement (format as specified by time format above) • Date/Time: date and time for the measurement (format as specified by date / time format above) •...
  • Page 92 Manual LCom 5.11 GPRS / Analog Modem The parameters for the GPRS connection or the Hayes-Compatible analog modem are configured here. 5.11.1 GPRS Modem The “PIN” for the SIM card (unless switched off) and the access data (user name/password/server) for the GPRS provider need to be configured here. After changing the GPRS configuration data the system may have to be rebooted (some parameters are stored in the registry) in order for the changes to take effect.
  • Page 93 Alternatively to the GPRS modem an Analog modem for a PPP dial in connection may be used, if this is supported by the operating system version on your device. Please contact Lufft support if you need this option, but you see the “NOT SUPPORTED” message as shown in above screenshot.
  • Page 94 Manual LCom Note that the IP address provided by the GPRS provider must be “public” (i.e. not blocked behind a firewall) in order to be able to connect to the LCom (and use the DynDNS service) ! http://www.dyndns.com/ for details about the DynDNS service. •...
  • Page 95 Manual LCom Note: This option must NOT be set on stations without a “public” IP address, as otherwise it always produces an error and the GPRS modem is reset (the use of DynDNS on stations without a public IP address is not meaningful in any case).
  • Page 96 Manual LCom Up to 3 entries can be configured. Each entry needs to be configured with a different external port. Besides the external port (i.e. the TCP port that will be available on the IP address of the GPRS modem), the internal IP address and port are configured to which this port should be redirected.
  • Page 97 Manual LCom 5.12 AutoUpdate The parameters for the automatic update feature are configured here. The application checks, at the configured interval, whether “general” updates for all stations (that have not yet been processed), or specific update files for this station (see “Serial Number/ID”...
  • Page 98 Manual LCom • Delete Trace File After Upload: The trace file on the LCom is deleted after uploading it to the server (to avoid multiple data transmission). • Upload TLS Error.Log: A log file with a trace of the TLS DE error messages is zipped and transferred to the server (to the “individual”...
  • Page 99 Manual LCom 5.13 System General System Parameters: • Control Panel: Starts the control panel, e.g. to calibrate the screen • CMD: Starts a command shell. • Sensor Service Mode: switches the LCom into a special service mode. In this service mode all LCom functions (communication with sensor devices, Uplink protocol etc.) are disabled, and the external power supply for the UMB sensors (GUB_1) is active.
  • Page 100 Manual LCom make the “individual” directories on the server (which the station creates automatically) easily assignable (e.g. "SH_WARDER" or "SH_AHRENSBOEK" etc.). Note: The ID must be selected so that it is a valid directory name on a Unix System (FTP server), i.e. no spaces or special characters (the configuration interface does NOT verify this).
  • Page 101 Manual LCom significant amount of time. Note 2: Enabling “data storage” does not actually enable the storage of data for any sensor. Whether data for a specific sensor channel is stored or not is set in the UMB sensor configuration (see above). •...
  • Page 102 Manual LCom 5.13.1 Device Settings • Device-Type: UMB or UMB+OPUS200. If Opus200 devices are connected in addition to the UMB devices, the Opus200 devices are connected to the serial port used for TLS Inselbus/Lokalbus, so these protocols may not be used when Opus200 devices are attached.
  • Page 103 Manual LCom If the UMB power is switched off, all sensors will report a special error code 0xF5 (except channels configured to report the battery status via TLS FG6 Type 51). The “Sensor Status” display will show appropriate error message if the UMB power is switched off.
  • Page 104 Manual LCom • Alarm Processing Enabled: controls weather alarm processing is enabled or not. • Digital I/O Module Communication Timeout: the timeout used for the TCP/IP communication with the module • New: add a new alarm channel to the configuration •...
  • Page 105 Manual LCom For each alarm channel following settings are available: • DigitalIO Host: the IP Address or DNS Host name for the digital I/O board • IP Port: the IP Port for Modbus/IP communication (usually 502) • I/O Port: the digital output port number on the digital I/O board. Usually the numbering starts with 0, i.e.
  • Page 106 Manual LCom threshold from where on the alarm condition is set to false – i.e. the delta between Alarm Min and Alarm Max determines the hysteresis range. • Alarm Max: in mode “max” this value determines the threshold from where on the alarm condition is set to true.
  • Page 107 (instead of standard °C) • The “TLS coded” parameter besides the road condition channel determines whether the input road condition is TLS or Lufft encoded. • Treat Errors as “No Alarm”: set result value to 0 (no Alarm) on error conditions instead of setting error code for result value.
  • Page 108 ((ROAD-CONDITION is critical) or FREEZE-TEMPERATURE is greater or equal to (ROAD-TEMPERATURE –0.1) i.e. the road sensor reports a critical road condition („Lufft“ coded values 3 (ice) 4 (snow/ice) 6 (freezing) or 7 (critical), TLS coded values: 64,65,66,67 ) or the freeze temperature is 0.1 (or less) ° below the road temperature...
  • Page 109 Manual LCom Snow/Rain is differentiated depending on the precipitation sensor encoding: Opus200: 0…9 no precipitation 10..19 rain 20..60 snow UMB: 0.. 60 no precipitation 60..66 rain 67..90 snow TLS: 0 : no precipitation 1..39 unknown 40..69 rain 70..79 snow If precipitation intensity is available as input sensor as well, and the precipitation type reported is “no precipitation”...
  • Page 110 Manual LCom Alarm 2: Is set if FREEZE-TEMPERATURE is rising AND FREEZE-TEMPERATURE is greater or equal to (ROAD-TEMPERATURE – 2.0) i.e. if the freeze temperature is rising (over “Freeze Temp Rising Min.” minutes) and 2 (or less) ° below the road temperature Alarm 3 Freeze Temperature –...
  • Page 111 Manual LCom The parameters for the road condition prognosis model are set here. Up to 15 independent instances for road condition prognosis model can be configured. For each calculation interval (default: 1 minute) only one instance will be calculated, i.e. if multiple instances are configured, they are calculated sequentially over time.
  • Page 112 Manual LCom 5.13.5 Change System User Here the system user and password can be configured. This user and password are used for • Telnet access to the LCom • for configuration dialogs on the LCom • (optional) when connecting via Service Program to the LCom In order to change the settings, the current user and password must be entered.
  • Page 113 Manual LCom • Simulation Active: The simulation model for saline concentration and freeze temperature is activated • Values TLS coded: the input values (waterfilm) are TLS coded. Note that this does not affect the coding of the output values – i.e. the freeze temperature is always reported as °C and may need to be scaled (for transmission via TLS).
  • Page 114 Manual LCom If the model calculation is active, “virtual” output sensor channels for the simulated saline concentration and freeze temperature are created automatically for every configured instance. 5.13.7 Fresh Snow Height Here the parameters for the fresh snow height model calculation are configured. The model calculates 2 values that are represented by 2 (virtual) sensor channels: fresh snow amount for measurement interval (i.e.
  • Page 115 Manual LCom • Encoding: encoding of precipitation type (Lufft-UMB, Lufft Frequency or TLS/WMO • Precipitation Diff: sensor channel for precipitation difference (mm) • Air Temperature: sensor channel for air temperature • TLS coded: temperatures (air and dewpoint) are TLS coded (-> in 1/10 °C) •...
  • Page 116 Manual LCom Multiple instances for the model calculation can be configured (in case the station is equipped with more than one road sensor). Note: the default values are preset for the (German) TLS protocol, e.g. the “Dewpoint diff” value of 5.0 refers to 0.5 °C as the temperatures for TLS are in 1/10 °C. Please adjust the parameters as needed for the sensor channels configured here.
  • Page 117 Manual LCom 5.13.9 MicKS DE132 Here the parameters for the MicKS TLS Type DE132 model calculation can be set (See 6.1.2.2.3) Multiple instances of the model calculation (for multiple road sensors) are supported. The parameters are: • Road Temperature: the road temperature sensor •...
  • Page 118 Manual LCom • FPDIFF2: Freezing Point Delta 2 • WFHU1: Waterfilm parameter 1 • WFHU2: Waterfilm parameter 2 • WFHU3: Waterfilm parameter 3 • WFHU4: Waterfilm parameter 4 • DPDIFF: Dewpoint Delta • PIMIN: Precipitation Intensity minimum 5.13.10 Bridge Deck Alarm The “Bridge Deck Alarm”...
  • Page 119 Manual LCom • Road Condition: the road condition sensor channel • Precipitation Type: the precipitation type sensor channel • Friction: the friction sensor channel • Air Temp. Threshold: the air temperature threshold value (default 0) • Road Temp. Threshold: the road temperature threshold value (default 0) •...
  • Page 120 Manual LCom act Use Case View Receiv ed measurement: Air Temperature Dew point Temperature Surface (Bridge Deck) Temperature Freezing Point Friction Road Condition (Surface Status) Precipitation Type Step 1: surface temperature below SURFACE_TEMP_THRESHOLD No Alarm (0°C) Step 2: Friction below FRICTION_THRESHOLD Alarm (1) (0.4)
  • Page 121 Manual LCom (depending on the configured input channels) calculates a simulated (“expected”) value for the water film from precipitation intensity, air temperature and humidity. The parameters are as follows: • Waterfilm: the waterfilm as measured by the road sensor (in mm) •...
  • Page 122 Manual LCom • Precip. Int. Factor: a factor used to weight the precipitation intensity in calculating the simulated water film height • Evaporation Factor: a factor used to weight the evaporation value calculated from air temperature and relative humidity when calculating the simulated water film height.
  • Page 123 Manual LCom 5.13.12 Wavetronix Click 512 Here, parameters for transmitting events received from a Wavetronix Click 512 can be configured. The events written by the Wavetronix device are collected (in the original format) in a text file on the SD-card of the LCom, and transmitted in configurable intervals to the server.
  • Page 124 Manual LCom The button „show events“ opens a dialog, showing the events stored on the device. Page 124 of 158...
  • Page 125 Manual LCom 5.13.13 DGT RC Alarm Code Here, the parameter for calculating the DGT RC Alarm Code are configured: • Dewpoint Temperature: the channel for dewpoint temperature in °C • Road Temperature: the channel for road temperature in °C • Freeze Point Temperature; the channel for freeze point temperature in °C •...
  • Page 126 Manual LCom • Bit 0: (TSB): low road temperature • Bit 1: (RAR): risk of dew • Bit 2: (RAE): risk of frost • Bit 3: (RCC): risk of ice 5.13.14 Sand Storm Detection The Input parameters for sand storm protection are: •...
  • Page 127 Manual LCom If precipitation intensity is configured, the precipitation intensity value has to be below the configured threshold. If wind speed is configured, the wind speed value has to be above the configured threshold If wind direction is configured, the wind direction has to be in the configured direction and range.
  • Page 128 Manual LCom 5.13.15 Wet Spot Detection The input values for wet spot detection are • Waterfilm • Precipitation Intensity • Air Temperature • Relative Humidity A simulated water film value is calculated from these input measurements. If the measured value for water film level – multiplied by the configured waterfilm compare factor –...
  • Page 129 Manual LCom 5.13.16 Dewpoint The parameters for dewpoint calculation are as follows: • Air Temperature: the air temperature (°C or °F) • Temperatures in °F: select, whether temperatures are in °C or °F • Rel. Humidity: the relative humidity (%) Note: the resulting dewpoint temperature unit follows the input air temperature unit, i.e.
  • Page 130 Manual LCom 5.14 Test RS232 A simple test application for RS232 interfaces. After opening the COM interface by clicking “Connect” you can enter a text in the input field and send this to the serial interface by clicking “Send”. The digital-IO module ports are shown on the right-hand side and the status of the corresponding signals (on/off) can be set (for “output”...
  • Page 131 Manual LCom 5.15 Software Update / Remote Maintenance Software updates and (remote) maintenance scripts can be supplied via an FTP server (see AutoUpdate) or USB stick. Provided that “AutoUpdate” is activated and configured correctly, the software check at pre-set intervals whether a file named “update.txt” is available on the ftp server in the “general”...
  • Page 132 Manual LCom 5.16 File Update.txt The “update.txt” file serves to control the update mechanism in the LCom. The file has the following content: Line 1: Timestamp (UCT/Unix timestamp as integer) – where appropriate with “readable” date after the Unix timestamp. Line 2: Optional: The name of the “Update Command File”...
  • Page 133 Manual LCom reactivated by disconnecting and reconnecting the USB stick (wait time > 3 seconds). Page 133 of 158...
  • Page 134 Manual LCom 5.17 Command File The command file (default: update.ucmd) contains the actual commands that are processed by the LCom. General format: The command keyword is given in arrow brackets “<…>” at the beginning of the line. This is followed by the command parameters, which are comma-separated. The command itself is not case-sensitive;...
  • Page 135 Manual LCom <reboot> The LCom is rebooted (e.g. after the transfer of a new LCom version). <run> Program The specified program is started. The system waits for the program to end. The return value of the program is evaluated accordingly. <delete>...
  • Page 136 Manual LCom <start> Program name The specified program is started asynchronously, i.e. processing continues without waiting for the started program to end, and without evaluating any return value. <kill> Program name The specified program is aborted/killed (if possible). <runcmd> Command The specified command is processed in “cmd.exe”.
  • Page 137 Manual LCom <set-ntcip-snmp-dll> dll-filename Sets the name of the SNMP agent for NTCIP (dll) in the registry (for updating the SNMP agent to a new version) Sends the “monitor” command <moncmd> Device address, monitor command to the specified device. Command and response are written to a file (MonitorCmd<timstamp>.txt) which is transferred to the...
  • Page 138 Manual LCom 5.18 Examples Note: When transferring ZIP files to the LCom (software update), the ZIP archive should be created with the service program (or similar tool) in order to guarantee that the ZIP archive is compatible with the LCom software (e.g. no path name in the archive…).
  • Page 139 Manual LCom Update.txt Update_firmware.txt R2S_Release_V48.mot “Update.txt” file: 1188475324 update_firmware.ucmd “Update_firmware.ucmd” file: <COPY>\Hard Disk\R2S_Release_V48.mot, \temp\R2S_Release_V48.mot <FIRMUP>0x2001, \temp\R2S_Release_V48.mot Page 139 of 158...
  • Page 140 Manual LCom 5.19 Firmware Update via FTP Server The following files are stored on the “device-specific” directory on the FTP server: Update.txt Update_firmware.txt R2S_Release_V48.zip “Update.txt” file: 1188475324 update_firmware.ucmd “Update_firmware.ucmd” file: <GET><sernum>/R2S_Release_V48.zip, \temp\R2S_Release_V48.zip <UNZIP>\temp\R2S_Release_V48.zip, \temp\ <FIRMUP>0x2001, \temp\R2S_Release_V48.mot Page 140 of 158...
  • Page 141 Manual LCom 5.20 Service Program The service program connects to the LCom via TCP/IP; it can be used over both LAN and Internet (GPRS/CDMA) connections. Basically the service program is built like the user interface on the LCom (but without the “RS232 Test”...
  • Page 142 Manual LCom 6 Appendix 6.1 Supported TLS DE Data Types 6.1.1 Extended error message DE-Type 14 If configured (see „Uplink“ configuration above), the error code reported by the UMB device for a channel is transmitted as a supplier-defined byte in the DE-Type 14 error message.
  • Page 143 Manual LCom Wind Speed WG Snow Height SH Visibility SW Luminosity HK Wind Speed (Peak) WGS Freezing Point GT Dew Point TPT Subsurface Temperature 1 TT1 Subsurface Temperature 2 TT22 Subsurface Temperature 3 TT3 Road Condition FBZ Precipitation Type NS Water Film Height WFD Thaw Chemical Concentration TSK Thaw Chemical Amout TSQ...
  • Page 144 Manual LCom Type Description Road Humidity (8 bit) Road Condition (8 bit) Precipitation Type (8 bit) Unless adjusted by scaling or value mapping, the value reported by the UMB sensor channel is used for all data types. If the UMB sensor channel does not already report the proper TLS unit (e.g.
  • Page 145 [1..254] Byte 3 DE Type [ 129 ] Byte 4 TLS Manufacturer Code [47] = Lufft [0…100, 255] Byte 5 Ice percentage (%) Ice Percentage 0…100 % 255 = Error / no measurement possible 6.1.2.2.2 Type 131 – Water film height in 0.1mm...
  • Page 146 [1..254] Byte 3 DE Type [ 183 ] Byte 4 TLS Manufacturer Code [47] = Lufft Byte 5 Time reserve in minutes [0, 1-90, 254] Time Reserve: 0 = road condition is currently ice 1..90 (or 1..240) ice warning xxxx minutes 254: no icing expected within prognosis horizont 6.1.2.2.5 Type 184 –...
  • Page 147 [5 + n ] Byte 2 Channel [1..254] Byte 3 DE Type [ 184 ] Byte 4 TLS Manufacturer Code [47] = Lufft n=0…36 Byte 5 Number of Prognosis values (n) Byte 6 Time Interval between values [10..180] minutes Byte 7 Prognosis-Value 1...
  • Page 148 Manual LCom For Alarm Model Version 2, additional bits are set as follows: Bit 4: 1=Alarm A3 Freeze Temperature – black ice Bit 5: 1=Alarm A3 Dewpoint – slippery frost Bit 6: 1=Alarm A3 Precipitation – freezing rain Bit 7: 1=Alarm A3 Precipitation – snow 6.1.3 FG6 6.1.3.1 Standard data types FG6 The FG6 standard data types support the following:...
  • Page 149 Length of the de block Byte 2 Channel [1..254 ] Byte 3 DE-Type [ 151 ] Byte 4 Supplier-code 47 (Lufft) Byte 5 See table STATUS 0 STATUS 1 Power ok (BM=open) Power failure (BM=closed) UPS ok (BA=open) UPS defect (BA=closed)
  • Page 150 Manual LCom For this data type, any value mapping assigned to the sensor channel is ignored! A special calculation is used to map the resistance value to the bit map above. The value supplied by the sensor channel must match the expected resistance coding NOMINAL VALUE (OHM) VALID VALUE RANGE (OHM) FI LS BA BM...
  • Page 151 Channel [1..254] Byte 3 DE type [ 221 ] Byte 4 Supplier code [47] (Lufft) Byte 5 Number of results Byte 6 Status circuit breaker [0,1] Number of results is always 1 Status of the circuit breaker is coded as follows:...
  • Page 152 Channel [1..254] Byte 3 DE type [ 222 ] Byte 4 Supplier code [47] (Lufft) Byte 5 Number of results Byte 6 Status fuel cell tank level [0,1] Number of results is always 1 Status of the fuel cell tank level is coded as follows:...
  • Page 153 Manual LCom 6.2 Connection Example Page 153 of 158...
  • Page 154 Manual LCom 6.3 Change History November 2009 P. Rau Version 1.3.9 • Updated English version of manual with screenshots and corrected some translation errors November 2009 P. Rau Version 1.3.11 • Improved error handling when transferring cam picture from camera •...
  • Page 155 Manual LCom • Warning if UMB channel is set inactive but has a valid TLS configuration July 2010 P. Rau Version 1.4.1 • Fixed memory leak in FTP August 2010 P. Rau Version 1.5.0 • Support for Opus200 devices • Bug Fix TLS: one response telegram per OSI7-telegram in request •...
  • Page 156 Manual LCom January 2012 P. Rau Version 1.9.0 • Support clock sync for Wavecon devices • Alarm Module – control Acromag 983EN-4012 via Modbus/IP (WCDC) • Persistent log for LCom reboots on \FFDISK2 • Change IRS21 surrogate model for SH February 2012 P.
  • Page 157 Manual LCom December 2015 P. Rau Version 2.8.0 • Support for IRS31Pro Road Condition encoding in Prognosis • “Bridge Deck Alarm” model calculation December 2015 P. Rau Version 2.9.0 • Smoothed/simulated water film model calculation January 2016 P. Rau Version 2.9.1 •...
  • Page 158 Manual LCom • Extended private MIB for Sand Storm and Wet Spot Detection • Boschung Alarm Code: optionally treat error conditions as “no alarm” October 2019 P. Rau Version 2.18.0 • New calc channel “Dewpoint” • Bug fix maximum number of parameters for Auto-update script commands November 2019 P.

Table of Contents