Advertisement

3/23/2021
Home
NanoVNA V2
Hardware versions /
Firmware downloads
Software downloads
User manual
Forum / Users group
Other docs
FAQ
For distributors
Contact Us
https://nanorfe.com/nanovna-v2-user-manual.html
< Back to NanoVNA V2
NanoVNA V2 / S-A-A-2 User Manual
UG1101 2020/09
User Manual | NanoVNA V2
1/37

Advertisement

Table of Contents
loading

Summary of Contents for NANO NanoVNA V2

  • Page 1 3/23/2021 User Manual | NanoVNA V2 < Back to NanoVNA V2 Home NanoVNA V2 / S-A-A-2 User Manual NanoVNA V2 UG1101 2020/09 Hardware versions / Firmware downloads Software downloads User manual Forum / Users group Other docs For distributors Contact Us https://nanorfe.com/nanovna-v2-user-manual.html...
  • Page 2 3/23/2021 User Manual | NanoVNA V2 Table of Contents Introduction Credits Relationship to the NanoVNA Specifications VNA basics Menu map User interface Main screen Menu screen Keypad screen Device settings Performing measurements Setting the measurement frequency range Calibration Trace display...
  • Page 3 Appendix I – Hardware architecture. The NanoVNA V2 firmware is based on ttrftech’s NanoVNA firmware. The UI code is kept mostly intact (other than porting to C++11) while the low level infrastructure and signal processing code are rewritten. The USB interface is similar to the NanoVNA in that it passes commands over a virtual serial port. However, much of the sweep and data transfer logic is reworked in order to support faster sweep rates and avoid data corruption.
  • Page 4: Specifications

    3/23/2021 User Manual | NanoVNA V2 Specifications Parameter Board version Specification Conditions V2_2, V2 Plus 50kHz - 3GHz Frequency range V2 Plus4 50kHz – 4.4GHz Frequency resolution 10kHz 70dB f < 1.5GHz V2_2, V2 Plus 60dB f < 3GHz f < 1GHz...
  • Page 5 (DUT) across a configured frequency range. The NanoVNA V2 is a two port T/R (transmission/reflection) VNA which can measure the S parameters S11 and S21 of a two port network, or the reflection coefficient (S11) of a one port network.
  • Page 6 3/23/2021 User Manual | NanoVNA V2 Menu map https://nanorfe.com/nanovna-v2-user-manual.html 6/37...
  • Page 7 3/23/2021 User Manual | NanoVNA V2 https://nanorfe.com/nanovna-v2-user-manual.html 7/37...
  • Page 8: User Interface

    3/23/2021 User Manual | NanoVNA V2 2 - User interface Main screen 1. START frequency 2. STOP frequency The START frequency and STOP frequency are shown at the bottom of the display. 3. Marker The marker position for each trace is displayed as a small numbered triangle. The selected marker can be moved to any of the measured points in the following ways: Drag a marker on the touch panel –...
  • Page 9 3/23/2021 User Manual | NanoVNA V2 This is not shown on the NanoVNA V2. Battery percentage is indicated by the 4 red LEDs along the left side on the bottom of the device. https://nanorfe.com/nanovna-v2-user-manual.html 9/37...
  • Page 10: Menu Screen

    3/23/2021 User Manual | NanoVNA V2 Menu screen 11. Menu List The menu can be opened by the following operations: When a location other than a marker on the touch screen is tapped. When the ENTER button is pressed. https://nanorfe.com/nanovna-v2-user-manual.html...
  • Page 11: Keypad Screen

    3/23/2021 User Manual | NanoVNA V2 Keypad screen 12. Numeric keys Tap a number to enter one character. 13. Back key Delete one character. If no character is entered, the entry is canceled and the previous state is restored. 14. Unit key Multiplies the current input by the appropriate unit and terminates input immediately.
  • Page 12: Device Settings

    3/23/2021 User Manual | NanoVNA V2 Device settings The CONFIG menu contains general settings for the device: Saving device settings Select CONFIG →SAVE to save general instrument settings. General device settings are data that includes the following information: Touch screen calibration information...
  • Page 13 3/23/2021 User Manual | NanoVNA V2 Touch panel calibration and testing The LCD touch panel can be calibrated using CONFIG → TOUCH CAL if there is a large difference between the actual on-screen tap position and the recognized tap position.
  • Page 14: Performing Measurements

    3/23/2021 User Manual | NanoVNA V2 3 - Performing measurements The basic measurement sequence is: 1. Set the frequency range to be measured. Use STIMILUS → START/STOP or STIMILUS → SPAN/CENTER 2. Perform calibration (and save!) 3. Connect the Device Under Test (DUT) and measure.
  • Page 15 3/23/2021 User Manual | NanoVNA V2 Setting the measurement frequency range There are three types of measurement range settings. Setting the start frequency and stop frequency Setting the center frequency and span Zero span Setting the start frequency and stop frequency Select and set STIMULUS →...
  • Page 16: Trace Display

    3/23/2021 User Manual | NanoVNA V2 Calibration Calibration must be performed whenever the frequency range to be measured is changed. When calibration is activated, the left side of the screen should show “Cx” and “D”. Changing the frequency sweep range always clears the active calibration, if any.
  • Page 17: Trace Format

    REACTANCE : Reactance component of the measured impedance (ohms per div) Trace channel The NanoVNA V2 has two channels, CH0 and CH1, corresponding to ports 1 and 2. CH0 is the S parameter S11, while CH1 is the S parameter S21.
  • Page 18 3/23/2021 User Manual | NanoVNA V2 Markers Up to 4 markers can be displayed. Markers are selected by the menu items MARKER →SELECT MARKER →MARKER n . Clicking on a disabled marker menu item enables it and makes it active. Clicking on an enabled but non-active marker activates it.
  • Page 19: Time Domain Operation

    User Manual | NanoVNA V2 Time domain operation The NanoVNA V2 can simulate time domain reflectometry by transforming frequency domain data. Select DISPLAY →TRANSOFRM →TRANSFORM ON to convert measured data to the time domain. If TRANSFORM ON is enabled (Inverted white text on black background), the measurement data is immediately converted to the time domain and displayed.
  • Page 20 3/23/2021 User Manual | NanoVNA V2 Time domain low pass step The trace format can be set to REAL. Example measurements of Step response are shown below. Open Short Capacitive short Inductive short Capacitive discontinuity (C in parallel) Inductive discontinuity (L in series) https://nanorfe.com/nanovna-v2-user-manual.html...
  • Page 21 3/23/2021 User Manual | NanoVNA V2 https://nanorfe.com/nanovna-v2-user-manual.html 21/37...
  • Page 22 3/23/2021 User Manual | NanoVNA V2 Time domain window The range that can be measured is a finite number, and there is a minimum frequency and a maximum frequency. A window can be used to smooth out this discontinuous measurement data and reduce ringing.
  • Page 23 3/23/2021 User Manual | NanoVNA V2 Recall calibration and settings Up to 5 calibration datasets can be saved. Calibration data includes the following information: Frequency range setting Error correction at each measurement point Trace settings Marker settings Domain mode settings Electrical delay You can save the current settings by selecting CAL →...
  • Page 24 3/23/2021 User Manual | NanoVNA V2 4 - NanoVNA-QT Software This chapter describes the usage of the NanoVNA-QT PC software with the NanoVNA V2. NanoVNA-QT is derived from software for the xaVNA. Platforms supported: Linux, Windows (7+), Mac OS (10.11+) https://nanorfe.com/nanovna-v2-user-manual.html...
  • Page 25 3/23/2021 User Manual | NanoVNA V2 User interface 1 – Smith chart display Shows a smith chart of S11 or S22 depending on the radiobutton selected. 2 – Line graph display Shows a line graph plot of two user selected traces. The two dropdown lists above the graph select the data source displayed.
  • Page 26: Connecting To The Device

    3/23/2021 User Manual | NanoVNA V2 Connecting to the device After connecting the device to the PC using a USB cable, a new serial port device should show under the Device menu in NanoVNA-QT. If no device shows up, you may need to install the Cypress USB Serial driver (can be found on NanoVNA-QT binary release downloads).
  • Page 27 Start frequency/Stop Frequency control the sweep frequency range. Frequency points is the number of discrete frequency points. Output power is not applicable to the NanoVNA V2 and the setting is ignored. Under Show advanced settings: nWait is not applicable to the NanoVNA V2 and the setting is ignored.
  • Page 28 S11 and S21 response. Other calibration types in the dropdown list apply to full two port VNAs only and are not applicable to the NanoVNA V2 which is a T/R VNA. 3. Attach a SMA coaxial cable to port 1.
  • Page 29 3/23/2021 User Manual | NanoVNA V2 Calibration kit parameters NanoVNA-QT supports user calibration kit parameters. Click Calibration > Kit settings under main menu to open the Calibration kit parameters dialog. Each calibration kit type can be associated with an S parameter model, or an ideal model can be used. Clicking on the S-Parameter radio button will bring up a file chooser dialog to select the S parameter file.
  • Page 30: Firmware Update

    3/23/2021 User Manual | NanoVNA V2 Firmware Update The NanoVNA-QT software has built in support for updating the firmware on the NanoVNA V2. To perform a firmware update: 1. Connect the device to a PC using a USB cable. 2. Put the device into DFU mode. This can be done from the device menu by selecting CONFIG →DFU, and selecting RESET AND ENTER DFU.
  • Page 31: Appendix I - Hardware Architecture

    User Manual | NanoVNA V2 5 - Appendix I – Hardware architecture The NanoVNA V2 is a highly cost optimized design that aims to achieve the best possible RF performance within a tight BOM budget. The following block diagram shows a high level overview of the system.
  • Page 32: Signal Generators

    3/23/2021 User Manual | NanoVNA V2 Signal generators Two ADF4350 RF synthesizers, plus one Si5351, provide the stimulus and LO signals. The Si5351 covers frequencies up to 140MHz, and the rest are covered by the ADF4350s. Directional coupler The coupler is based on a Wheatstone bridge rearranged so that input and DUT ports are referenced to ground. The coupled signal exists as a difference signal and is extracted by baluns.
  • Page 33: Appendix Ii - Usb Data Interface

    6 - Appendix II – USB data interface The NanoVNA V2 appears as a USB CDC (Communications Device Class) virtual serial port both during normal operation and in DFU mode. PC software can issue commands and request data by sending and receiving data on the virtual serial port.
  • Page 34 3/23/2021 User Manual | NanoVNA V2 Host to device command list All byte values in the table are in hexadecimal. B0 to B5 denote bytes 0 to 5. B0 is the opcode. B0 B1 Name Description No operation INDICATE Device always replies with ascii ‘2’ (0x32) Read a 1-byte register at address AA.
  • Page 35: Register Descriptions

    Returns VNA sweep data points. Each value is 32 bytes. valuesFIFO Writing any value (using WRITE command) clears the FIFO. See FIFO data format section below. deviceVariant The type of device this is. Always 0x02 for NanoVNA V2. protocolVersion Version of this wire protocol. Always 0x01. hardwareRevision Hardware revision.
  • Page 36 3/23/2021 User Manual | NanoVNA V2 FIFO data format The values read from valuesFIFO are 32 bytes each. The following table lists the fields in each value. All byte offsets are in hexadecimal. All multi-byte integers are encoded in Little Endian. Lowest numbered bytes contain the least significant portions of the integer.
  • Page 37 Write 0x5e to initiate a soft reset. deviceVariant The type of device this is. Always 0x02 for NanoVNA V2. protocolVersion Version of this wire protocol. Always 0x01. hardwareRevision Hardware revision. Always 0x00 in DFU mode. firmwareMajor Firmware major version.

This manual is also suitable for:

S-a-a-2

Table of Contents

Save PDF