Table of Contents

Advertisement

ISO9001 Quality Management System Authentication
CE Authentication
EN630/EN650A series
0.4-1.5KW
Series Inverter
Ver.2.0
Users'Manual
SHENZHEN ENCOM ELECTRIC TECHNOLOGIES CO.,LTD.

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the EN630 Series and is the answer not in the manual?

Questions and answers

Summary of Contents for Encom EN630 Series

  • Page 1 ISO9001 Quality Management System Authentication CE Authentication EN630/EN650A series 0.4-1.5KW Series Inverter Ver.2.0 Users’Manual SHENZHEN ENCOM ELECTRIC TECHNOLOGIES CO.,LTD.
  • Page 2 Thank you for purchasing EN630/EN650A series inverter developed and produced by Shenzhen Encom Electric Technologies CO., LTD. EN630 series mini hi-performance flux vector inverter adopts advanced control mode to achieve high torque, high precision and wide-range speed regulation drive, and it also supports speed sensorless torque control and PG control torque.
  • Page 3: Table Of Contents

    Content Content 1 Safety information and use notice points 1.1Safety precautions 1.2Use notice points 1.3 Use notice points 2 Inverter Type and Specification 2.1 Incoming inverter inspect 2.2 Type explanation 2.3 Nameplate explanation 2.4 Inverter type explanation 2.5 Appearance and parts name explanation 2.6 Outer size &...
  • Page 4 目录 3.6.3 Analog input&output terminal wiring 3.6.4 Communication terminal wiring 3.7 Installation guidance of anti-interference 3.7.1 noise interference restraining 3.7.2 Field wiring and earth grounding 3.7.3 long distance wiring & Leak current and countermeasure 3.7.4 Installation demand for electromagnetic on-off electronic device 4 Run and operation explanation for inverter 4.1 Run of inverter...
  • Page 5 Content 6.4 Alarm reset 7 Maintenance 7.1 Routine maintenance 7.2 Inspection and replacement of damageable parts 7.3 Repair guarantee 7.4 Storage Appendix A EN650A Mini multi-function PMSM Inverter Appendix B Free-port Communication Protocol Appendix C Modbus communication protocol Appendix D Braking unit and braking resistance...
  • Page 6: Safety Information And Use Notice Points

    1 Safety information and use notice points 1 Safety information and use notice points To make ensure personal & equipment safety, this chapter must be read carefully before the inverter come into use. 1.1 Safety precautions There are three kinds of safety warnings in this manual as below: Symbol Symbol description It may cause human death, serious injury or heavy property loss...
  • Page 7 1 Safety information and use notice points Forbid to cut off the power source directly when inverter under running, acceleration or deceleration status. Power source could cut off when inverter completely in halt and standby status. Otherwise user should be responsible for inverter and device damage and human injury.
  • Page 8: Use Notice Points

    1 Safety information and use notice points 1.2 Application range (1) This kind of inverter apply to 3 phase ac asynchronous motor only for general industry. (2) It should handle cautiously and consult with manufacturer when inverter apply to high reliability required equipment which relevant to life, properties and safety device.
  • Page 9 1 Safety information and use notice points otherwise, it need to change voltage or custom special voltage inverter. (10)When inverter usage site altitude over1000 meters,inverter should decrease current to use, output current decrease about 10% of rated current per 1000 meters increase.
  • Page 10: Inverter Type And Specification

    2 Inverter Type and Specification 2 Inverter Type and Specification 2.1 Incoming inverter inspect (1) Check if there is damage during transportation and inverter itself has damage or fall-off parts. (2) Check if parts presented in packing list are all ready. (3) Please confirm nameplate data of the inverter is in line with your order requirement.
  • Page 11: Inverter Type Explanation

    2 Inverter Type and Specification 2.4 Inverter type explanation Table 2-1 inverter type explanation Rated output Adaptable motor Inverter type Current(A) (KW) EN630/EN650A-2S0004 EN630/EN650A-2S0007 0.75 EN630/EN650A-2S0015 EN630/EN650A-4T0007 0.75 EN630/EN650A-4T0015 2.5 Appearance and parts name explanation digital tube Digital potentiometer Up cover plate Operation keypad Terminal wiring cover Open here to connect brake resistor...
  • Page 12: Outer Size Of Keypad And Its Fixing Box

    2 Inverter Type and Specification Table 2-2 mounting size Fix Hole Inverter type (mm) (mm) (mm) (mm) (mm) (mm) (mm) (kg) EN630/EN650A-2S0004 EN630/EN650A-2S0007 148.5 112.5 124.7 EN630/EN650A-2S0015 EN630/EN650A-4T0007 EN630/EN650A-4T0015 2.7 Outer size of keypad and its fixing box(unit:mm) Fig. 2-5 EN-LED5-D keypad& Hole size of keypad 2.8 Product technic index and spec Item Item description...
  • Page 13 2 Inverter Type and Specification 1:2000(PG vector control) Speed regulation 1:100(vector control) ; range 1:50(V/F control) ; 1.0Hz:150% rated torque(V/F control) ; Start-up torque 0.5Hz:150% rated torque (vector control); 0Hz:180% rated torque(PG vector control) ; ±0.3% rated synchronous speed(vector control) ; Speed fluctuation ±0.1% rated synchronous speed(PG vector control)...
  • Page 14 2 Inverter Type and Specification Automatic Current limited automatically under run mode in avoid of inverter current limiting over-current frequently to trip. carrier Modulate carrier wave automatically according to the load modulation characteristic. Speed tracking Make rotating motor smoothly start without shocking restart running Keypad specified, control terminal specified, communication...
  • Page 15 2 Inverter Type and Specification Motor power on Shot circuit test, input & output phase loss protection, over-current protection, over voltage protection, under Protection function voltage protection, over heat protection, overload protection, under load protection, relay absorption protection, terminal protection and no stop protection under power off. Indoor, not bare to sunlight, no dust, no corrosive gas, no Application site flammable gas, no vapor, no water drop or salt etc.
  • Page 16: Installation And Wiring

    3 Installation and wiring 3 Installation and wiring 3.1 Installation ambient 3.1.1 The demands for installation ambient (1) Installed in drafty indoor place,the ambient temperature should be within -10ºC~40ºC,it needs external compulsory heat sink or reduce the volume if temperature is over than 40ºC. (2) Avoid installing in places with direct sunlight, much dust, floating fiber and metal powder.
  • Page 17: Parts Disassembly And Installation

    3 Installation and wiring 3.2 Parts disassembly and installation 3.2.1 Keyboard disassembly and installation (1) Disassembly Let the forefinger press finger inlet on the keypad,press fixing flexible plate on the top lightly,draw it outward, then you can disassemble the keypad. (2) Assembly First interface the fixed hook of on the bottom of keyboard with the keyboard installation claw of inverter, then press the fixed shrapnel on the top of keyboard...
  • Page 18: Main Loop Terminal Wiring

    3 Installation and wiring (1)Before wiring, assure power supply is cut off completely for 10 minutes and all LED indicator light extinguished. (2) Wiring can only be done by professional person trained and qualified. (3) Before power on, check if voltage grade of the inverter is in line with that of power supply volt., otherwise will cause personnel injured and device da L1(R)
  • Page 19: Connection Between Inverter And Fitting Parts

    3 Installation and wiring 3.4.1 Connection between inverter and fitting parts (1) Breaking device like isolation Switch must assemble between power source and inverter to keep persona safety under repairing and inverter requirement for compulsory power off. (2) There must be over-current 空气开关...
  • Page 20: Main Loop Terminal Wiring

    3 Installation and wiring 3.4.2 Main loop terminal wiring Main loop input output terminal show as table 3-1. Table 3-1 main loop input output terminal description Adapted type Main loop terminal Terminal name Function description Zero line EN630/EN650A-2S0004 Live line ~...
  • Page 21: Control Loop Collocation And Wiring

    3 Installation and wiring 3.6 Control loop collocation and wiring 3.6.1 Relative location and function for control board terminal and slide switch: Control board terminal and slide switch location show as Fig 3-7. User terminal function explanation can be seen in table 3-2,The setting description and function of slide switch check table3-3, terminal CN3 is for manufacturer usage.
  • Page 22: Descriptions For Control Board Terminal

    3 Installation and wiring Table 3-3 Slide switch function description for users Default Function Analog AO output,0~10V & 4~20mA switch. 0~10V Locate “V” side, 0~10V output;locate “I” side,4~20mA output Analog AI1 input,0~10V & 4~20mA switch. 0~10V Locate “V” side,0~10V input;locate “I” side,4~20mA input Analog AI2 input,-10~10V &...
  • Page 23 3 Installation and wiring Input voltage range:0~ Accept analog 10V (Input impedance: voltage/current quantity 20KΩ) input,voltage, current AI1 Analog input AI1 Input current range:4~ selected by switch SW3, 20mA (Input impedance: factory default is voltage. Analog 250Ω) inpu (reference:GND) resolution:1/4000 Accept analog voltage Input voltage range:-10~...
  • Page 24: Analog Input&Output Terminal Wiring

    3 Installation and wiring Table 3-6 terminal function on control board CON1 Type Symbol Description Terminal Function Specification TB-TC: close normal, TA-TC: open normal. normal:TB-TC Relay Fault output Contactor capacity : close,TA-TC open output relay AC250V/2A (COSΦ=1) alarm:TB-TC open,TA-TC terminal AC250V/1A (COSΦ=0.4) close DC30V/1A...
  • Page 25: Communication Terminal Wiring

    3 Installation and wiring (1) Under analog input mode, filter capacitor or common mode choke can be installed between AI1 and GND or AI2 and GND. (2) Analog input and output signal can be interfered easily by ambient environment, it need use shield cable for connection and Note earth grounding well as short as possible.
  • Page 26: Installation Guidance Of Anti-Interference

    3 Installation and wiring ⑵ Inverter RS485 interface and host computer (device with RS232 interface) connection: RS232/RS485 converter Host computer Pin No. Signal name description Shield cable EN630/EN650A inverter shell description name Signal Signal Fig.3-12 RS485 communication wiring 3.7 Installation guidance of anti-interference Inverter main circuit consist of high power semiconductor and switch component, for which will generate electromagnetic noise when working, and to avoid or reduce inverter interference to ambient environment, this chapter...
  • Page 27 3 Installation and wiring Interference Type Electromagnetic Circuit conduction Space emission induction interference interference interference Inverter power Input wire 输入线 变频器功率 Output wire 输出线 Leak current Power wire high 漏电流接 电源线高次 component induction induction earth grounding harmonic current 部件感应 感应 感应...
  • Page 28: Field Wiring And Earth Grounding

    3 Installation and wiring (3)Basic countermeasure for restrain interference Table 3-7 interference restrain countermeasure Noise spread Countermeasure of weakening effect road Earth grounding cable of peripheral device and inverter wiring make up of the closed-loop and leakage current of inverter earth grounding ①...
  • Page 29: Long Distance Wiring & Leak Current And Countermeasure

    3 Installation and wiring ⑵ ,V,W terminal 3 motor wires should be placed in metal tube or metal wiring tank as possible as. ⑶ Generally control signal wire should use shield cable, when shield layer connect to inverter terminal, it should be the single end earth grounding which closed to inverter side.
  • Page 30: Installation Demand For Electromagnetic On-Off Electronic Device

    3 Installation and wiring (2) as carrier frequency low, the motor noise would increase accordingly. 3.7.4 Installation demand for electromagnetic on-off electronic device It should pay attention that surge absorber must be installed when electromagnetic on-off electronic device like relay, electromagnetic contactor and electromagnetic iron generating noise easily and largely installed near to inverter or in the same control cabinet, show as Fig.
  • Page 31: Run And Operation Explanation For Inverter

    4 Run and operation explanation for inverter 4 Run and operation explanation for inverter 4.1 Run of inverter 4.1.1 Running order channels There are 3 kinds of order channel for controlling run action of the inverter such as run, stop, jog etc. 0:keypad Control by key on keypad (factory default).
  • Page 32: Work State

    4 Run and operation explanation for inverter 6: Reserved; 7: high speed pulse provision (X7 terminal need select the corresponding function); 8~14: Reserved Assist frequency provision: 0: keypad analog potentiometer provision; 1: AI1 analog setting; 2: AI2 analog setting; 3: terminal UP/DOWN adjustment provision; 4: communication provision (Modbus and external bus share a main frequency memory);...
  • Page 33: Run Mode

    4 Run and operation explanation for inverter 4.1.4 Run mode EN630/EN650A inverter have 6 kinds of run mode, following is in turn according to their priority, jog run →closed-loop run →PLC run →multi-section speed run→swing frequency run →common run. Shown as Fig.4-1. electrification waiting state...
  • Page 34 4 Run and operation explanation for inverter The inverter will come into closed-loop run mode when closed –loop run control effective parameter is set (F11.00=1 or F12.00=5). Namely carry on PID adjustment to specified value and feedback value (proportion integral differential calculation, see F11 group function code) and PID adjuster output is inverter output frequency.
  • Page 35: Operation And Use Of Key Board

    4 Run and operation explanation for inverter 4.2 Operation and use of key board 4.2.1 Keypad layout The operating keyboard is the main unit of frequency inverter to accept commands, display parameters. Keyboard outline diagram shown in Figure 4-2. Failure alarm indicator light Forward run indicator light Reverse run indicator light Mode indicator light...
  • Page 36: Led And Indicator Light

    4 Run and operation explanation for inverter In common run status the inverter will be stopped according to set mode after pressing this key if run command channel is set as keypad stop Stop/reset key effective mode. The inverter will be reset and resume normal stop status after pressing this key when the inverter is in malfunction status.
  • Page 37 4 Run and operation explanation for inverter (1) Waiting parameter display status The inverter is in waiting status and waiting status supervision parameter is displayed on keyboard: normally parameter F00.13 decide which status supervision parameter to be displayed. As shown in Fig.4-3 b, the indicator light shows the unit of the parameter.
  • Page 38 4 Run and operation explanation for inverter to see about F26 group parameter if want to search failure information. Can carry on failure restoration by key: control terminal or communication command on the keypad after troubleshooting. Keep displaying failure code if failure exist continuously. For some serious failure, such as inverse module protect, over current: over voltage etc.: must not carry on failure reset forcibly to make the inverter run again without failure elimination...
  • Page 39: User Management Parameters

    4 Run and operation explanation for inverter 4.2.5 User Management Parameters In order to facilitate the user parameter management: EN630/EN650A component model parameter menu for display management. The parameters do not need to be displayed can be shielded. ⑴ Method parameter setting mode display. By setting F00.00 = 0,1,2,3 respectively parameter mode is set: Basic menu mode: menu mode Intermediate: Advanced menu mode and user menu mode.
  • Page 40 4 Run and operation explanation for inverter LED displayed F01.00 F00.00 F01.00 F01.01 0.00 content Key-press Enter into operation Choose Move Choose editing Status order F01 group position to be function Exit editing display first-class function code code F01.01 adjusted status menu F01.02...
  • Page 41 4 Run and operation explanation for inverter 5.00 0.00 0.00 0.01 0.01 displayed press content release waiting keep Key-press … waiting operation Display run Output frequency Display Output frequency order output Increased by 5Hz Fall down to 0Hz set frequency Stop running Fig.4-10 Jog run operating example (5) Operation for entering to function code editing status after setting user...
  • Page 42: Inverter Electrification

    4 Run and operation explanation for inverter 4.3 Inverter electrification 4.3.1 Check before electrification Please carry on wiring based on operation requirement provided in “inverter wiring” of this Service manual. 4.3.2 First electrification Close input side AC power supply switch after correct wiring and power supply confirmed: electrify the inverter and keypad LED display “8.8.8.8.8”, contactor closed normally: LED displayed set frequency shows that electrification is finished.
  • Page 43: Function Parameter Schedule Graph

    5 Function parameter schedule graph 5 Function Parameter Schedule Graph 5.1 Symbol description × ---- parameter can’t be changed in process of running ○ ---- parameter can be changed in process of running * ---- read-only parameter, unchangeable 5.2 Function parameter schedule graph F00-System Parameter Group Function Min.
  • Page 44 5 Function parameter schedule graph 33:process PID output(0.01Hz) 34:simple PLC current segment No. 35:external multi-speed current segment No. 36:constant pressure water supply provide pressure(0.001Mpa) 37:constant pressure water supply feedback pressure(0.001Mpa) 38:constant pressure water supply relay status 39:current length(1M) 40:accumulate length(1M) 41:current internal count value 42:current internal time value 43:run command setup channel(0:keyboard...
  • Page 45 5 Function parameter schedule graph F00.13 Power-on fault monitor ○ parameter selection F00.14 Parameter operation LED units digit: Parameter modification operations × control 0:All parameters are allowed to be modified 1:Except current parameter, all other parameters are not allowed to modify 2:ExceptF01.01,F01.04and current parameter ,...
  • Page 46 5 Function parameter schedule graph 4~10: reserved F00.20 Analog input LED units digit:AI1 configuration 0000 × terminal configuration 0:0~10V input 1:4~20mA input LED tens digit: AI2 configuration 0:-10~10V input 1:4~20mA input LED hundreds digit: reserve LED thousands digit: reserve F00.21 Analog output LED units digit: AO configuration 0000...
  • Page 47 5 Function parameter schedule graph F01.01 Main frequency digital 0.00Hz~upper limit frequency 0.01Hz 50.00Hz ○ setup F01.02 Main frequency digital Only when parameter F01.00=0, 3, 4 valid. ○ control LED units digit: power down reserve setup 0:Main frequency power down reserve. 1:Main frequency power down no reserve.
  • Page 48 5 Function parameter schedule graph complex of main and auxiliary frequency F01.09 Auxiliary frequency 0:Relative upper limit frequency. ○ range selection 1:Relative main frequency. F01.10 Auxiliary frequency 0.00~1.00 0.01 1.00 ○ source scope F01.11 upper limit frequency low limit frequency~600.00Hz 0.01Hz 50.00Hz ×...
  • Page 49 5 Function parameter schedule graph initiation segment time (Acceleration/deceleration time) S curve deceleration start time+ S curve deceleration raise time ≤90% ) F01.24 S curve deceleration up 10.0%~70.0% 0.1% 60.0% ○ segment time (Acceleration/deceleration time) S curve deceleration start time+ S curve deceleration raise time ≤90% ) F01.25 Keyboard jog run...
  • Page 50 5 Function parameter schedule graph time F02.21 Forward/Reverse switching 0: Over zero switchover × mode 1: Over starting frequency switchover F02.22 Energy consumption braking 0:No energy consumption braking ○ selection 1:Energy consumption braking 1 ( no braking if stop Base on working).
  • Page 51 5 Function parameter schedule graph F04.02 Jump freq. 2 0.00Hz~upper limit frequency 0.01Hz 0.00Hz × F04.03 Jump freq. 2 range 0.00Hz~upper limit frequency 0.01Hz 0.00Hz × F04.04 Jump freq. 3 0.00Hz~upper limit frequency 0.01Hz 0.00Hz × F04.05 Jump freq. 3 range 0.00Hz~upper limit frequency 0.01Hz 0.00Hz...
  • Page 52 5 Function parameter schedule graph F04.37 Deceleration time 12 1~60000 ○ F04.38 Acceleration time 13 1~60000 ○ F04.39 Deceleration time 13 1~60000 ○ F04.40 Acceleration time 14 1~60000 ○ F04.41 Deceleration time 14 1~60000 ○ F04.42 Acceleration time 15 1~60000 ○...
  • Page 53 5 Function parameter schedule graph F05.03 Local address 0~247, Modbus protocol 0 is broadcast address. Broadcast address can only receive and execute upper computer × broadcast command, cannot respond to upper computer. The address is 0 when turn to free protocol F05.04 Communication overtime 0.0~1000.0s...
  • Page 54 5 Function parameter schedule graph application parameter 1 F05.19 Input mapping F00.00~F26.xx 0.01 25.00 ○ application parameter 2 F05.20 Input mapping F00.00~F26.xx 0.01 25.00 ○ application parameter 3 F05.21 Input mapping F00.00~F26.xx 0.01 25.00 ○ application parameter 4 F05.22 Input mapping F00.00~F26.xx 0.01 25.00...
  • Page 55 5 Function parameter schedule graph setting F06.05 Curve 1 Max. setting Curve 1 inflexion setting ~ 100.0%, 100.0% 0.1% 100.0% ○ corresponding to 5V Input AD terminal F06.06 Corresponding physical 0.0~100.0% 0.1% 100.0% ○ quantity of curve 1 Max. setting F06.07 Curve 2 min.
  • Page 56 5 Function parameter schedule graph F07-Analog quantity, Pulse input function parameter group Function Min. Factory Modifi Name Set range code unit default -cation F07.00 AI1 input filter time 0.000~9.999s 0.001s 0.050s × F07.01 AI1 setting gain 0.000~9.999 0.001 1.002 ○ F07.02 AI1 setting bias 0.0~100.0%...
  • Page 57 5 Function parameter schedule graph X3 Input terminal opened 0.00~99.99s 0.01s 0.00s ○ F08.07 time X4 Input terminal closed 0.00~99.99s 0.01s 0.00s ○ F08.08 time X4 Input terminal opened 0.00~99.99s 0.01s 0.00s ○ F08.09 time X5 Input terminal closed 0.00~99.99s 0.01s 0.00s ○...
  • Page 58 5 Function parameter schedule graph 28:inverter running prohibited—Stop according to the stop mode 29:Acceleration/deceleration prohibited command 30: Three-wire running control 31: Process PID invalid 32:Process PID stop 33: Process PID integral holding 34:Process PID integral resetting 35:Process PID function negation(Closed loop adjustment feature negation) 36: simple PLC invalid 37: simple PLC halted...
  • Page 59 5 Function parameter schedule graph selection F08.20 Input terminal X3 function Same as above × selection F08.21 Input terminal X4 function Same as above × selection F08.22 Input terminal X5 function Same as above × selection F08.23 Input terminal X6 function Same as above ×...
  • Page 60 5 Function parameter schedule graph 19:overload pre-alarm signal(OL) 20:undervoltage lockout stop (LU) 21:external fault stop(EXT) 22:fault 23:alarm 24:simple PLC operation 25:simple PLC section operation finish 26:simple PLC circle operation finish 27:simple PLC operation stop 28:traverse frequency high and low limit 29:setup length arrival 30:internal counter final value arrival 31:internal counter designated value...
  • Page 61 5 Function parameter schedule graph value F09.17 Current 1 width 0.0~100.0% 0.1% 0.0% ○ F09.18 Current 2 arrival detection 0.0~250.0% 0.1% 100.0% ○ value F09.19 Current 2 width 0.0~100.0% 0.1% 0.0% ○ F09.20 Frequency 1 arrival detection 0.00Hz~upper limit frequency 0.01Hz 50.00Hz ○...
  • Page 62 5 Function parameter schedule graph F09.38 Reserved F09.39 Analog output(AO1) filter 0.0~20.0s 0.1s 0.0s ○ time F09.40 Analog output(AO1) gain 0.00~2.00 0.01 1.00 ○ F09.41 Analog output(AO1) bias 0.0~100.0% 0.1% 0.0% ○ F09.42 Reserved F09.43 Reserved F09.44 Reserved F09.45 DO filter time 0.0~20.0s 0.1s 0.0s...
  • Page 63 5 Function parameter schedule graph 6:ACC/DEC time 7 7:ACC/DEC time 8 8:ACC/DEC time 9 9:ACC/DEC time 10 A:ACC/DEC time 11 B:ACC/DEC time 12 C:ACC/DEC time 13 D:ACC/DEC time 14 E:ACC/DEC time 15 F10.02 Phase 2 setup 000H~E22H ○ F10.03 Phase 3setup 000H~E22H ○...
  • Page 64 5 Function parameter schedule graph F11-close loop PID run function parameter group Function Min. Factory Modifi Name Set range code unit default -cation F11.00 Close loop run control selection 0:PID close loop run control invalid × 1:PID close loop run control valid F11.01 Provide channel selection 0:digital provide...
  • Page 65 5 Function parameter schedule graph F11.20 Close-loop preset 0.0~6000.0s 0.1s 0.0s ○ frequency keep time F11.21 Close-loop output 0:close-loop output minus,low limit ○ changeover selection frequency run. 1:close-loop output minus,reverse run (effect by run direction setting ) 2:comfirmed by run order Close-loop output frequency 0.00Hz~upper limit frequency 0.01Hz...
  • Page 66 5 Function parameter schedule graph F12.12 Wake up pressure coefficient 0.01-0.99 0.01 0.75 ○ F12.13 Reserved F12.14 Reserved F13-Traverse/ Fixed Length Control Function Parameter Group Function Min. Factory Modifi Name Set range code unit default -cation F13.00 Traverse function enable 0:traverse invalid ×...
  • Page 67 5 Function parameter schedule graph LED tens digit: power low down length reserve setup 0: no reserve 1: reserved LED hundreds digit: stop and calculate length 0: don’t calculate 1: calculate F14-Vector Control Parameter Group Function Min. Factory Modifi Name Set range code unit...
  • Page 68 5 Function parameter schedule graph 1D01) 5: Reserved 6: Reserved 7: High-speed pulse setting (X7 terminal needs to be selected to the corresponding function) 8: Reserved LED hundreds digit: brake torque limit channel selection 0: digital setting 1: AI1 analog setting 2: AI2 simulation setting 3: Terminal UP / DOWN adjustment setting 4: communication setting (communication address:...
  • Page 69 5 Function parameter schedule graph 1D0B) 5: Reserved 6: Reserved 7: High-speed pulse setting (X7 terminal needs to be selected to the corresponding function) 8: Reserved Note: This parameter is valid when F00.24 = 1 or 2. Torque control forward speed 0.00Hz~upper limit frequency(valid when F00.24 = ○...
  • Page 70 5 Function parameter schedule graph F15.12 Reserved F15.13 Reserved F15.14 Reserved F15.15 Reserved F15.16 Reserved F15.17 Reserved F15.18 Reserved F15.19 Motor parameter auto 0: no action × adjustment selection 1: Asynchronous motor static self-tuning 2: Asynchronous motor rotation no-load self-tuning 3: Reserved Note: ①...
  • Page 71 5 Function parameter schedule graph F18-Enhance Control Parameter Group Function Min. Factory Modifi Name Set range code unit default -cation F18.00 Operation panel control 0:no binding ○ frequency binding 1:operation keyboard digital setup 2:AI1 analog setup 3:AI2 analog setup 4:terminal UP/DOWN adjusting setup 5:communication provide 6:reserved 7: reserved...
  • Page 72 5 Function parameter schedule graph under monitor mode 1:PID digital provide value adjusting 2~6:Reserved F18.15 V/F oscillation suppression 0.00Hz~upper limited frequency 0.01Hz 50.00Hz ○ cutoff frequency F18.16 Advanced control selection LED units digit: torque closed loop control enabled 0001 ○ 0: Torque open loop control 1: Torque closed loop control LED tens digit: Torque limit mode...
  • Page 73 5 Function parameter schedule graph F19.01 Fault self-recovery times 0~10(0 means no automatic reset function) × F19.02 Fault self-recovery 0.5~20.0s 0.1s 5.0s × interval time F19.03 Motor overload protection 0:alarm: continuous run × action selection 1:alarm,stop run as halt mode 2:fault,free halt F19.04 Motor overload protection...
  • Page 74 5 Function parameter schedule graph F19.21 Action estimate voltage when 60~100%(rated bus bar voltage) × instant power off F19.22 Allowed the longest off time 0.30~5.00s 0.01s 2.00s × when instant power off F19.23 Terminal external device fault 0:alarm,continuous run × action selection 1:alarm,stop run as halt mode 2:fault,free halt...
  • Page 75 5 Function parameter schedule graph during the period of recovery period of fault reset automatically 0:action 1:no action LED tens digit: fault clock function selection: to achieve fault display before power down: etc. 0:forbid 1:open F19.36 Continuous run frequency Match up with protect action ×...
  • Page 76 5 Function parameter schedule graph delay time F20.13 Virtual output VDO4 open 0.00~600.00s 0.01s 0.00s ○ delay time F20.14 Virtual output VDO1 open 0.00~600.00s 0.01s 0.00s ○ delay time F20.15 Virtual output VDO1 close 0.00~600.00s 0.01s 0.00s ○ delay time F20.16 Virtual output VDO2 close 0.00~600.00s...
  • Page 77 5 Function parameter schedule graph code unit default -cation F23.00~ Reserved F23.17 F24-Reserved Parameter Group 6 Function Min. Factory Modifi Name Set range code unit default -cation F24.00~ Reserved F24.13 F25-User Definition Display Parameter Group Function Min. Factory Modifi Name Set range code unit...
  • Page 78 5 Function parameter schedule graph F26-Fault Record Function Parameter Group Function Min. Factory Modifi Name Set range code unit default -cation F26.00 The last fault record 0:no fault 1:overcurrent at acceleration 2:overcurrent at deceleration 3:overcurrent at constant speed 4:overvoltage at acceleration 5:overvoltage at deceleration 6:overvoltage at constant speed 7:overvoltage at motor halt...
  • Page 79 5 Function parameter schedule graph one fault F26.09 Input terminal status at the last one fault F26.10 Accumulated run time at the 0~65535h last one fault F26.11 Setup frequency at the last two 0.00Hz~upper limit frequency 0.01Hz 0.00Hz fault F26.12 Output frequency at the last 0.00Hz~upper limit frequency 0.01Hz...
  • Page 80 5 Function parameter schedule graph (1) corresponding relationship of input terminal status as below: terminal input invalid terminal input valid Reserved terminal status Reserved terminal status Reserved terminal status terminal status terminal status terminal status terminal status (2) Corresponding relationship of standard output terminal status as below: : terminal input invalid terminal input valid Reserved...
  • Page 81 5 Function parameter schedule graph (4) Drive status: BIT0:1=DC bus voltage setup BIT1:1=common run command valid BIT2:1=jog run command valid BIT3:1=drive run period BIT4:1=current run direction to reverse BIT5:1=run command direction to reverse BIT6:1=deceleration brake period BIT7:1=motor acceleration period BIT8:1=motor deceleration period BIT9:1=drive alarm BIT10:1=drive fault BIT11:1=current limited period...
  • Page 82: Troubleshooting

    6 Troubleshooting 6 Troubleshooting 6.1 Failure and countermeasure Possible failure types in EN630/EN650A are shown in Table 6-1, the fault types including fault and alarm. Such as if inverter fault display E-XX , while the corresponding alarm is displayed in A-XX . Once the inverter failure , fault types are stored in the F26 fault recording parameter group, and if alarm, alarm status has been revealed, until the alarm source release, alarm status are not logged to the F26 parameter group.
  • Page 83 6 Troubleshooting Load change suddenly or have Check or reduce break of the load unwonted phenomena Overcurrent during Prolong accelerating decelerating time Acc/Dec. time is set too short E-03 constant speed properly process Low power source voltage Check input power supply Power of inverter is a bit small Choose inverter with higher power Unwonted input voltage...
  • Page 84 6 Troubleshooting Power source voltage is too low Check power source voltage Load is too big Choose inverter with higher power Improper V/F curve Adjust V/F curve and torque boost Power source voltage is too low check power source voltage General motor run at low Can choose frequency conversion speed with big load...
  • Page 85 6 Troubleshooting Ambient temperature is too high Lower ambient temperature Connecting wire or insert on Check and connect the wire again control board loose Unwonted current wave caused Check wiring by missing output phase etc. Assistant power supply damaged Look for service from manufacturer or and drive voltage lacking agent Look for service from manufacturer or...
  • Page 86 6 Troubleshooting Press "STOP/RESET" button to reset External E-20 External disturbance serious or add external power supply filter interference failure from power input side Power off and restart, if the failure External E-21 External disturbance serious persists, seek the manufacturer or interference failure dealer service PID given loss threshold setting...
  • Page 87 6 Troubleshooting disconnection The temperature detection circuit Look for service from manufacturer or anomaly agent Parameter setting not according set parameter correctly according to to the motor nameplate the motor nameplate E-32 Self tuning failure current anomaly when tuning Select inverter match the motor Motor wiring error Check the motor three-phase wiring Look for service from manufacturer or...
  • Page 88: Failure Record Lookup

    6 Troubleshooting Terminal function Terminal function parameters A-52 exclusiveness Check the terminal function settings setting repeatedly alarm A-53 Run limit alarm Reach limited running time Please contact your supplier LOCH1. Keypad lock Keypad buttons lock Check chapter 4.2.6 (1)Alarm fault of E-16, the inverter must be power off for reset. (2)For the faults of over-current, short-circuit to ground while running, inverter can reset after 2s delay Note...
  • Page 89: Failure Reset

    6 Troubleshooting 6.3 Failure reset (1) Before reset you must find out reason of failure downright and eliminate it, otherwise may cause permanent damage to the inverter. (2) If can’t reset or failure takes place again after resetting, should look for reason and continuous resetting will damage the inverter.
  • Page 90: Maintenance

    7 Maintenance 7 Maintenance 7.1 Routine maintenance When you use this series you must assemble and operate it according to demand listed in this “service manual” strictly. During run state, temperature, humidity, vibration and aging parts will affect it, which may cause failure of the inverter. To avoid this, it is recommended to perform routine inspections and maintenance.
  • Page 91: Inspection And Replacement Of Damageable Parts

    7 Maintenance 7.2 Inspection and replacement of damageable parts Some component parts in the inverter will be abraded or bear descending performance for long-term usage , to assure that the inverter can run stably and reliably, it is recommended to perform defending maintenance and replace corresponding parts if necessary.
  • Page 92: Storage

    7 Maintenance unwonted voltage, thunderbolt, water fog, fire, salt corroding, gas corroding, earthquake and storm etc.; f. Make bold to tear up product logo (such as: nameplate etc.); Body serial number don’t accord with that in repair guarantee card. (3) We calculate service fee based on actual cost, which is subject to contract if any.
  • Page 93: Appendix A En650A Mini Multi-Function Pmsm Inverter

    Appendix A EN650A Mini multi-function PMSM Inverter Appendix A EN650A Mini multi-function PMSM Inverter A.1 Symbol description × ---- parameter can’t be changed in process of running ○ ---- parameter can be changed in process of running * ---- read-only parameter, unchangeable A.2 Function parameter schedule graph F00-System Parameter Group Function...
  • Page 94 Appendix A EN650A Mini multi-function PMSM Inverter 17:extension input terminal status 18:communication virtual input terminal status 19:internal virtual input node status 20:analog input AI1(after checkout) (0.01V / 0.01mA) 21:analog input AI2(after checkout) (0.01V / 0.01mA) 22:extension analog input EAI1(after checkout) (0.01V / 0.01mA) 23:extension analog input EAI2(after checkout) (0.01V / 0.01mA) 24:analog AO1 output(after checkout)
  • Page 95 Appendix A EN650A Mini multi-function PMSM Inverter rated torque with direction) 50:Inverter output torque(1 N.M) 51~65:Reserved F00.02 C-01 display parameter Same as above ○ selection when operation F00.03 C-02 display parameter Same as above ○ selection when operation F00.04 C-03 display parameter Same as above ○...
  • Page 96 Appendix A EN650A Mini multi-function PMSM Inverter F00.14 Parameter operation Units digit: Parameter modification × control operations 0:All parameters are allowed to be modified 1:Except current parameter, all other parameters are not allowed to modify the 2:ExceptF01.01,F01.04and current parameter, all other parameters are not allowed to be modified Tens digit: Reset to factory defaults 0: No action.
  • Page 97 Appendix A EN650A Mini multi-function PMSM Inverter change the run direction when run: then press the same button change to another direction. 3: Free stop. setup free stop function and stop mode F02.11 the same function with 1 Jog run. 4: Switching to run command provide mode as the setup order of F00.16.
  • Page 98 Appendix A EN650A Mini multi-function PMSM Inverter F00.20 Analog input Units digit:AI1 configuration 0000 × terminal configuration 0:0~10V input 1:4~20mA input Tens digit: AI2 configuration 0:-10~10V input 1:4~20mA input Hundreds digit: Reserved Thousands digit: Reserved F00.21 Analog output Units digit: AO1 configuration 0000 ×...
  • Page 99 Appendix A EN650A Mini multi-function PMSM Inverter 7:High speed pulse setup(Select matched function for X7 terminal) 8~14:Reserved F01.01 Main frequency 0.00Hz~upper limit frequency 0.01Hz 50.00Hz ○ digital setup F01.02 Main frequency Only when parameter F01.00=0:3:4 valid. ○ digital control Units digit: power down reserve setup 0: Main frequency power down reserve.
  • Page 100 Appendix A EN650A Mini multi-function PMSM Inverter absolute value). 7:Selection no-zero value(auxiliary negative , main frequency prior ; auxiliary is negative,complex frequency is zero). F01.07 Auxiliary 0.00~10.00 0.01 1.00 ○ frequency provide coefficient F01.08 Coefficient after 0.00~10.00 0.01 1.00 ○ complex of main and auxiliary frequency...
  • Page 101 Appendix A EN650A Mini multi-function PMSM Inverter stop as the halt mode) F01.17 Acceleration time 1~60000(Acceleration time is interval accelerate Base on ○ from zero frequency to upper limit frequency) motor type F01.18 Deceleration time 1 ~ 60000(deceleration time is the interval Base on decelerate from upper limit frequency to zero ○...
  • Page 102 Appendix A EN650A Mini multi-function PMSM Inverter F02.01 Starting delay time 0.0~60.0s 0.1s 0.0s × F02.02 Starting frequency 0.0~10.00Hz 0.01Hz 0.00Hz × F02.03 Starting frequency 0.0~60.0s 0.1s 0.0s × duration time F02.04 DC braking current 0.0~100.0% 0.1% 30.0% × when starting F02.05 braking...
  • Page 103 Appendix A EN650A Mini multi-function PMSM Inverter F02.21 Forward/Reverse 0: Over zero switchover × switching mode 1: Over starting frequency switchover F02.22 Energy consumption 0:No energy consumption braking ○ braking selection 1:Energy consumption braking. F02.23 Energy consumption 115.0~145.0%(rated DC BUS voltage) 0.1% 125.0% ○...
  • Page 104 Appendix A EN650A Mini multi-function PMSM Inverter F04-Auxiliary running parameter group Function Min. Factory Modifi Name Set Range Code Unit Default -cation F04.00 Jump freq. 1 0.00Hz~upper limit frequency 0.01Hz 0.00Hz × F04.01 Jump freq. 1 range 0.00Hz~upper limit frequency 0.01Hz 0.00Hz ×...
  • Page 105 Appendix A EN650A Mini multi-function PMSM Inverter F04.15 Deceleration time 2 0.00Hz~upper limit frequency 0.01Hz 0.00Hz × switchover frequency F04.16 Acceleration time 2 1~60000 ○ F04.17 Deceleration time 2 1~60000 ○ F04.18 Acceleration time 3 1~60000 ○ F04.19 Deceleration time 3 1~60000 ○...
  • Page 106 Appendix A EN650A Mini multi-function PMSM Inverter 4:4800BPS 5:9600BPS 6:19200BPS 7:38400BPS 8:57600BPS Tens digit: Reserved Hundreds digit: Reserved F05.02 Data format Units digit: Modbus protocol data format × 0:1-8-1 format, no parity, RTU 1:1-8-1 format, even parity, RTU 2:1-8-1 format, odd parity, RTU 3:1-7-1 format, no parity, ASCII 4:1-7-1 format, even parity, ASCII 5:1-7-1 format, odd parity, ASCII...
  • Page 107 Appendix A EN650A Mini multi-function PMSM Inverter 0:Forbidden 1:Enabled. Bit5:CX6 virtual input terminal Enabled. 0:Forbidden 1:Enabled. Bit6:CX7 virtual input terminal Enabled. 0:Forbidden 1:Enabled. Bit7:CX8 virtual input terminal Enabled. 0:Forbidden 1:Enabled. F05.09 Communication virtual 0: Independent node. ○ input terminal joining 1: Terminal node.
  • Page 108 Appendix A EN650A Mini multi-function PMSM Inverter F05.25 Input mapping F00.00~F26.xx 0.01 25.00 ○ application parameter 8 F05.26 Input mapping F00.00~F26.xx 0.01 25.00 ○ application parameter 9 F05.27 Input mapping F00.00~F26.xx 0.01 25.00 ○ application parameter F05.28 Reserved F05.29 Reserved F05.30 Reserved F05.31...
  • Page 109 Appendix A EN650A Mini multi-function PMSM Inverter 100.0% is corresponding to 5V Input AD terminal F06.06 Corresponding physical 0.0~100.0% 0.1% 100.0% ○ quantity of curve 1 Max. setting F06.07 Curve 2 min. setting 0.0%~curve 2 inflexion setting 0.1% 0.0% ○ F06.08 Corresponding physical 0.0~100.0%...
  • Page 110 Appendix A EN650A Mini multi-function PMSM Inverter Units digit. Thousands digit: extended curve 1 Same as Units digit. Ten thousands digit: extended curve 2: Same as Units digit. F07-Analog , Pulse input function parameters group Function Min. Factory Modifi Name Set Range Code Unit...
  • Page 111 Appendix A EN650A Mini multi-function PMSM Inverter F08-On-off input function parameter group Function Min. Factory Modifi Name Set Range Code Unit Default -cation Input terminal 0000~FFFF(include extend input 0000 ○ F08.00 positive and negative terminal) logic setting Input terminal filter 0.000~1.000s(suitable for extend input 0.001s 0.010s...
  • Page 112 Appendix A EN650A Mini multi-function PMSM Inverter 6:Multi-step speed control terminal 2 7:Multi-step speed control terminal 3 8:Multi-step speed control terminal 4 9:Acc/Dec time selection terminal 1 10:Acc/Dec time selection terminal 2 11:Acc/Dec time selection terminal 3 12:Acc/Dec time selection terminal 4 13:Main and auxiliary frequency operational rule selection terminal 1 14:Main and auxiliary frequency...
  • Page 113 Appendix A EN650A Mini multi-function PMSM Inverter 42: main frequency switchover to EAI1 43: main frequency switchover to EAI2 44: main frequency setting channel selection terminal 1 45: main frequency setting channel selection terminal 2 46: main frequency setting channel selection terminal 3 47: main frequency setting channel selection terminal 4...
  • Page 114 Appendix A EN650A Mini multi-function PMSM Inverter function selection Input terminal X5 Same as above × F08.22 function selection Input terminal X6 Same as above × F08.23 function selection Input terminal X7 Same as above × F08.24 function selection F08.25 Reserved F08.26 FWD/REV operating...
  • Page 115 Appendix A EN650A Mini multi-function PMSM Inverter 13:frequency level detect signal 1(FDT1) 14:frequency level detect signal 2(FDT2) 15:output frequency arrival upper limit(FHL) 16:output frequency arrival low limit(FLL) 17:frequency 1 arrival output 18:frequency 2 arrival output 19:overload pre-alarm signal(OL) 20:undervoltage lockout stop (LU) 21:external fault stop(EXT) 22:fault 23:alarm...
  • Page 116 Appendix A EN650A Mini multi-function PMSM Inverter F09.10 Zero frequency 0.00Hz~Upper limit Fre. ○ signal detection 0.01Hz 0.00Hz value F09.11 Zero frequency 0.00Hz~Upper limit Fre. ○ 0.01Hz 0.00Hz return difference F09.12 Zero-current 0.0~50.0% 0.1% 0.0% ○ detection range F09.13 Zero-current 0.00~60.00s 0.01s 0.1s...
  • Page 117 Appendix A EN650A Mini multi-function PMSM Inverter F09.34 Relay output turn-off 0.000~50.000s 0.001s 0.000s ○ delay time F09.35 Analog output(AO1) 0:output frequency before slip ○ compensation(0.00Hz~upper limit frequency) 1:output frequency after slip compensation(0.00Hz~upper limit frequency) 2:Setup frequency(0.00Hz~upper limit frequency) 3:main setting frequency(0.00Hz~upper limit frequency) 4:auxiliary setting frequency(0.00Hz~upper limit frequency)
  • Page 118 Appendix A EN650A Mini multi-function PMSM Inverter F10-Simple PLC/Multi-speed Function Parameter Group Function Min. Factory Modifi Name Set Range Code Unit Default cation F10.00 Simple PLC run Units digit: run mode selection 0000 × setup 0:inaction 1:stop after single cycle 2:final value keep after single cycle 3:continuous cycle Tens digit: interrupt run restart mode...
  • Page 119 Appendix A EN650A Mini multi-function PMSM Inverter B:ACC/DEC time 12 C:ACC/DEC time 13 D:ACC/DEC time 14 E:ACC/DEC time 15 F10.02 Step 2 setup 000H~E22H ○ F10.03 Step 3 setup 000H~E22H ○ F10.04 Step 4 setup 000H~E22H ○ F10.05 Step 5 setup 000H~E22H ○...
  • Page 120 Appendix A EN650A Mini multi-function PMSM Inverter Multi-speed 0.00Hz~upper limit Fre. F10.36 0.01Hz 45.00Hz ○ frequency 6 Multi-speed 0.00Hz~upper limit Fre. F10.37 0.01Hz 50.00Hz ○ frequency 7 Multi-speed 0.00Hz~upper limit Fre. F10.38 0.01Hz 5.00Hz ○ frequency 8 Multi-speed 0.00Hz~upper limit Fre. F10.39 0.01Hz 10.00Hz...
  • Page 121 Appendix A EN650A Mini multi-function PMSM Inverter F11.03 Provide channel 0.01~50.00s 0.01s 0.20s × filtering time F11.04 Feedback channel 0.01~50.00s 0.01s 0.10s × filtering time F11.05 PID output filtering 0.00~50.00s 0.01s 0.00s ○ time Provide digital setup 0.00~10.00V F11.06 0.01V 1.00V ○...
  • Page 122 Appendix A EN650A Mini multi-function PMSM Inverter provision 1 F11.24 Multi-section 0.00~10.00V 0.01V 0.00V ○ close-loop provision 2 F11.25 Multi-section 0.00~10.00V 0.01V 0.00V ○ close-loop provision 3 F11.26 Multi-section 0.00~10.00V 0.01V 0.00V ○ close-loop provision 4 F11.27 Multi-section 0.00~10.00V 0.01V 0.00V ○...
  • Page 123 Appendix A EN650A Mini multi-function PMSM Inverter 1:reserve Traverse frequency 0.0~50.0% 0.1% 10.0% ○ F13.02 swing value F13.03 Jump frequency 0.0~50.0% 0.1% 2.0% ○ F13.04 Traverse cycle 0.1~999.9s 0.1s 10.0s ○ F13.05 Triangular wave 0.0~98.0% (traverse cycle) 0.1% 50.0% ○ time Traverse preset 0.00~400.00Hz...
  • Page 124 Appendix A EN650A Mini multi-function PMSM Inverter F15.05 Motor pole pairs. 1~80 × F15.06 Asynchronous 0.0000~6.5535Ω 0.0001 Base on × motor stator motor resistance F15.07 Asynchronous 0.000~6.5535Ω 0.0001 Base on × motor rotor motor resistance F15.08 Asynchronous 0.00~655.35 mH 0.01mH Base on ×...
  • Page 125 Appendix A EN650A Mini multi-function PMSM Inverter F16.09 PMSM current-loop 0.000~5.000 0.001 0.650 ○ proportion gain F16.10 PMSM current-loop 0.000~5.000 0.001 0.150 ○ integration time F16.11 PMSM torque control 0:Forward direction ○ direction setup 1:Reverse direction F16.12 PMSM torque provision 0:Digital setting provision ×...
  • Page 126 Appendix A EN650A Mini multi-function PMSM Inverter coefficient at low frequency F16.24 PMSM pre-excitation time 0.000s~5.000s 0.001s 0.300s × F16.25 PMSM field weakening 0.0~2.0 × coefficient F16.26 Asynchronous motor 0.010~6.000 0.001 0.700 ○ speed-loop proportional gain F16.27 Asynchronous motor 0.010~9.999 0.001 0.360 ○...
  • Page 127 Appendix A EN650A Mini multi-function PMSM Inverter F18-Enhance Control Parameter Group Function Min. Factory Modifi Name Set Range code Unit Default -cation F18.00 Operation panel control 0:no binding ○ frequency binding 1:operation keyboard digital setup 2:AI1 analog setup 3:AI2 analog setup 4:terminal UP/DOWN adjusting setup 5:communication provide 6:Reserved...
  • Page 128 Appendix A EN650A Mini multi-function PMSM Inverter time F18.11 Setup run function 0:Invalid ○ enable 1:Valid F18.12 Setup run stop time 0.1~6500.0Min 0.1Min 2.0Min ○ F18.13 Currently run arrival 0.0~6500.0Min 0.1Min 1.0Min ○ time F18.14 Keyboard UP/DW 0:keyboard frequency provide value ○...
  • Page 129 Appendix A EN650A Mini multi-function PMSM Inverter alarm detection level F19.09 Motor under-load 0.1~60.0s 0.1s 2.0s ○ alarm detection time F19.10 Motor under-load Units digit: detection selection ○ alarm detection action 0:no detection 1:detection all the time when run 2:detection only when constant velocity Tens digit: action selection 0:alarm,continuous run...
  • Page 130 Appendix A EN650A Mini multi-function PMSM Inverter F19.21 Action estimate voltage 60~100%(Rated DC bus voltage) × when instant power off F19.22 Allowed the longest off 0.30~5.00s 0.01s 2.00s × time when instant power F19.23 Terminal external device 0:alarm,continuous run × fault action selection 1:alarm,stop run as halt mode 2:fault,free halt...
  • Page 131 Appendix A EN650A Mini multi-function PMSM Inverter Tens digit: E PROM abnormal action selection 0:alarm, continue run 1:alarm, stop run as halt mode 2:fault, free halt Hundreds digit: contactor abnormal action 0:alarm,continue run 1:alarm,stop run as halt mode 2:fault,free halt Thousands digit: under-voltage fault indication action selection...
  • Page 132 Appendix A EN650A Mini multi-function PMSM Inverter F20-Internal Virtual Input Output Node Parameter Group Function Min. Factory Modifi Name Set Range code Unit Default -cation F20.00 Virtual input VDI1 0~90 ○ function selection F20.01 Virtual input VDI2 0~90 ○ function selection F20.02 Virtual input VDI3 0~90 ○...
  • Page 133 Appendix A EN650A Mini multi-function PMSM Inverter close delay time F20.19 Virtual output VDO5 0.00~600.00s 0.01s 0.00s ○ close delay time F20.20 Virtual input VDI enable 00~FF ○ control F20.21 Virtual input VDI status 00~FF ○ digital setup F20.22 Virtual input/output 00~FF ○...
  • Page 134 Appendix A EN650A Mini multi-function PMSM Inverter F23-Reserved parameters group 5 Function Min. Factory Modifi Name Set Range code Unit Default -cation F23.00~ Reserved F23.17 F24-Reserved parameters group 6 Function Min. Factory Modifi Name Set Range code Unit Default -cation F24.00~...
  • Page 135 Appendix A EN650A Mini multi-function PMSM Inverter F25.22 User Function Code 23 F00.00~F25.xx 0.01 25.00 ○ F25.23 User Function Code 24 F00.00~F25.xx 0.01 25.00 ○ F25.24 User Function Code 25 F00.00~F25.xx 0.01 25.00 ○ F25.25 User Function Code 26 F00.00~F25.xx 0.01 25.00 ○...
  • Page 136 Appendix A EN650A Mini multi-function PMSM Inverter 33:contactor abnormal 34:factory fault 1 35:factory fault 2 36:capacitor overheat(few mode with overheat protection) 37:encoder disconnection 38:over-speed protection 39:~50:Reserved F26.01 The last two fault records Same as above F26.02 The last three fault records Same as above F26.03 The last four fault records...
  • Page 137 Appendix A EN650A Mini multi-function PMSM Inverter F27-Password and Manufacturer Function Parameter Group Function Min. Factory Modifi Name Set Range Code Unit Default -cation F27.00 User password 00000~65535 00000 ○ Manufacturer 00000~65535 F27.01 00000 ○ password C-Monitor Function Parameter Group Function Min.
  • Page 138: Appendix B Free-Port Communication Protocol

    B. 1 Summarization We provide the customer with general RS485/RS232 communication interface in our EN630 series frequency inverter. For the users, through the communication interface upper device (such as PC, PLC controller etc.) can perform centralized monitor to the inverter (such as setting inverter parameter,...
  • Page 139 Appendix B Free-port Communication Protocol  auxiliary device keypad. (4) Auxiliary device report current failure information to mainframe in the last response frame. (5) EN630 provides RS485 interface. B.2.3 Transport mode Asynchronous serial, half-duplex transmission mode. Default format and transport rate: 8-N-1, 9600bps.For specific parameter setting please see description for F05 group function code.
  • Page 140 Appendix B Free-port Communication Protocol   F05.02 Data format 00 × LED first bit:freedom protocol and Modbus protocol data format 0:1-8-1 format, no checkout, RTU 1:1-8-1 format, even checkout, RTU 2:1-8-1 format, odd checkout, RTU 3:1-7-1 format, no checkout, ASCII 4:1-7-1 format, even checkout, ASCII 5:1-7-1 format, odd checkout, ASCII F05.03 Local address 0~247, 00 is master station address...
  • Page 141 Appendix B Free-port Communication Protocol  Auxiliary device response frame format Sending order 9 10 11 12 13 14 15 16 17 18 Sending byte Fig.B-2 command/response frame format Remark: (1) “Setting data area” and “run data area” may not be existent in some command/data frame format, so in protocol command list it’s marked with “nothing”.
  • Page 142 Appendix B Free-port Communication Protocol   to the command. Double byte, ASCII format. Response code function classification: Species 1>: command code=“10”, mainframe ask auxiliary device to report current preparation state and control situation. Table B-1 Command code meanings for response frame response area Meanings Response code...
  • Page 143 Appendix B Free-port Communication Protocol  (1) control to auxiliary device is Whether report this response code relate to ineffective; current set state of auxiliary device. When (2) ineffective function code parameter report data of area”, “index area” and “run modification; data area”...
  • Page 144 Appendix B Free-port Communication Protocol   Under voltage during running RS485 communication failure process Inverter overload protection Reserved Motor overload protection Reserved Motor underload protection Reserved Input phase missing PROM read and write wrongly Output phase missing Temperature detection breakage Inverting module protection Self-tuning failure Short circuit to earth during...
  • Page 145 Appendix B Free-port Communication Protocol  Overvoltage during Reserved constant speed process Control power supply Under voltage overvoltage Inverter overload System interference Motor overload Reserved Inverter over heating Reserved PROM read and write Reserved wrongly Reserved (5) Checkout sum Data meanings: frame checkout, 4 byte, ASCII. Calculation method: accumulative sum of ASCII code value of all byte from “auxiliary device address ”to“...
  • Page 146 Appendix B Free-port Communication Protocol   Auxiliary ~010B0001019 setting 0.01Hz frequency Setting ~010B0002019 0.01Hz frequency Output ~010B0003019 0.01Hz frequency Output current ~010B0004019 0.1A Output voltage ~010B0005019 bus-bar ~010B0006019 0.1V voltage Load motor ~010B0007019 revolving 1RPM speed Load motor ~010B0008019 linear speed Inverter ~010B0009019 1℃...
  • Page 147 Appendix B Free-port Communication Protocol  Communicationa ~010B000F019 l virtual input terminal state Internal virtual ~010B000F019 input node state Analog input ~010B000F019 Analog input ~010B000F019 Expanding ~010B000F019 analog input EAI1 Expanding ~010B000F019 analog input EAI2 Analog AO1 ~010B000F019 output Analog ~010B000F019 output Expanding ~010B000F01...
  • Page 148 Appendix B Free-port Communication Protocol   Process ~010B000F019 0.01Hz output Simple ~010B000F019 current segments External multi-section ~010B000F019 speed current segments Provision pressure ~010B000F019 0.001M constant pressure water Feedback pressure ~010B000F019 0.001M constant pressure water Relay state for ~010B000F019 constant pressure water Current length ~010B000F019 Accumulative...
  • Page 149 Appendix B Free-port Communication Protocol  Auxiliary frequency ~010B000F01 provision A9\r channel Inverter rated ~010B000F01 0.1A current AA\r Inverter rated ~010B000F01 voltage AB\r Inverter rated ~010B000F019 0.1KW power Reserved Reserved Frequency after acceleration ~010B0033019 0.01Hz deceleration Motor rotor ~010B0034019 0.01Hz frequency Current ~010B0035019 provision...
  • Page 150 Appendix B Free-port Communication Protocol   Auxiliary Auxiliary 0Hz~hi device run with ~010C00020FA device run gh limit 0.01Hz run frequency 0027D\r Set freq. freq provision =40.00Hz Auxiliary ~010C0003019 device forward Auxiliary ~010C0004019 device reverse Auxiliary Forward 0Hz~ device forward high ~010C00050F run with run 0.01Hz...
  • Page 151 Appendix B Free-port Communication Protocol  Auxiliary ~010C000C01 device failure A7\r restoration Query auxiliary ~010F0000019 device software version Free-Port 2 protocol command table Mainframe sending example, such as Mainfr Auxili Orde data PC control operation Run data Name setting of inverter Description order index...
  • Page 152 Appendix B Free-port Communication Protocol   Auxiliary device ~010C00040198\r reverse run Auxiliary device forward 0Hz~ with high limit ~010C00050FA00280\r 0.01Hz freq frequency provision Auxiliary device reverse 0Hz~ with high limit ~010C00060FA00281\r 0.01Hz freq frequency provision Auxiliary ~010C0007019B\r device stop Auxiliary device jog ~010C0008019C\r Auxiliary...
  • Page 153 Appendix B Free-port Communication Protocol  ~010F00000197\r Table B-5 read auxiliary device function code parameter Read auxiliary device function code parameter: all function code parameter Function except user password and manufacturer password definition except user password and manufacturer password Frame Order Checkout Frame Meanings...
  • Page 154 Appendix B Free-port Communication Protocol   virtual data 0~FFFF (namely 0~65535) Please input correct “user password” before you set user function code parameter. Table B-6 set auxiliary device function code parameter Function Set auxiliary device function code parameter: all function code parameter except definition user password and manufacturer password Frame...
  • Page 155 Appendix B Free-port Communication Protocol  Mainframe order ADDR See remark Byte quantity Function Auxiliary device ADDR See remark code respond parameter Byte quantity Command index=combination of function code group number and hex code of function code number. For instance: If want to read parameter of F00.05 function code, order index=0005; If want to read parameter of F02.11 function code, order index =020B;...
  • Page 156 Appendix B Free-port Communication Protocol   Virtual data 0~FFFF(namely 0~65535)  ...
  • Page 157: Appendix C Modbus Communication Protocol

    Appendix C Modbus communication protocol Appendix C Modbus communication protocol C.1 Summary We provide general RS485 communication interface in our EN630/ EN650A inverters for the user. Through this communication interface upper device (such as HMI, PC, PLC controller and etc.) can perform centralized monitor to the inverter (such as to set inverter parameter, control run of inverter, read work state of the inverter).
  • Page 158 Appendix C Modbus communication protocol C.4 Transmission mode Asynchronous serial, semiduplex transport mode. Default format and transport rate: 8-N-1, 9600bps. The detail setting parameter, please refer to the F05 group function mode. (Remark: the parameter is valid under the Modbus communication, the other parameter comply with the original service manual) F05.00 Protocol...
  • Page 159 Appendix C Modbus communication protocol message can begin after this pause.The entire message frame must be transmitted as a continuous flow. If a new message start transmitting in less than 3.5 character times after a message and then receiving device will consider it a continuation of the previous message.
  • Page 160 Appendix C Modbus communication protocol Parameters initial address high byte Parameters initial address low byte Number of parameter high byte Number of parameter low byte CRC check value low byte CRC check value high byte The contents of slave reply: Parameter value bytes Address 0000H content high byte Address 0000H content low byte...
  • Page 161 Appendix C Modbus communication protocol C. 6 Data communication address allocation C.6.1 Function code F00-F26 group communication address Inverter function parameter’s MODBUS communication address addressing process follows PPnn way: PP means high byte of the address, corresponding to function parameter’s group number; nn means low byte of the address, corresponding to function code parameter’s group internal code.
  • Page 162 Appendix C Modbus communication protocol Modbus communication address 1E01(frequency setting)can be torque setting and pressure setting address Note C.6.3 Monitor parameter communication address Communication read-write Variable name Command data or response value address attribute 1C00H C-00 Reading Monitoring parameters 1 1C01H C-01 Reading...
  • Page 163 Appendix C Modbus communication protocol 1D09H BIT0:CX1 Communication virtual input terminal read-write … given value BIT7: CX8 Positive torque Range: 0~60000 (60000 represents 1D0AH read-write limited frequency 600.00Hz) Negative torque Range: 0~60000 (60000 represents 1D0BH read-write limited frequency 600.00Hz) Process PID Range: 0~4000 (4000 represents 1D0CH read-write...
  • Page 164 Appendix C Modbus communication protocol C.8 Data frames examples C.8.1 RTU Mode 1. Start 1# inverter running Register Register Data Slave Order address Data Field address High High high Address code High byte byte byte byte host command frames Slave respond frames 2.
  • Page 165 Appendix C Modbus communication protocol C.8.2 ACSII Mode Host read Slave,command code: 03 The host frame The host frame format Send byte Remark:  Begin symbol: The lower computer judge the frame header of ASCII based on this. It is:’:’ ...
  • Page 166 Appendix C Modbus communication protocol  Checksum: From “slave address” to the character before checksum, the LRC checksum of the character string. Function terminal can be seen on the end of the text.  Ending code: enter,line break. is:0x0D,0x0A Response frame Response frame format Send byte...
  • Page 167 Appendix C Modbus communication protocol  Checksum: From “slave address” to the character before checksum, the LRC checksum of the character string. The function terminal can be seen in the later text.  Ending symbol: enter, line break. Is 0x0D,0x0A The followings are the example of command frame and return frame, all the Data are ASCII character.
  • Page 168 Appendix C Modbus communication protocol The host frame The host frame format Send byte Remark:  Slave address: Single inverter ID code,range:0~247. Thereinto, address 00 is broadcast address.  Command code: Read parameter from inverter or command of Data, the value is:06 ...
  • Page 169 Appendix C Modbus communication protocol  Slave address: Single inverter ID code,range:0~247. Thereinto, address 00 is broadcast address.  Command code: Read parameter from inverter or command of Data, the value is:06  Register address: The storage address of inverter function parameter, is double byte. The high byte is in the front and the low byte is in the back.
  • Page 170 Appendix C Modbus communication protocol 0 6:write command 0 1 0 1:storage address of writing parameter 1 3 8 8:the value of writing parameter 5C:{ 0 1 0 6 0 1 0 1 1 3 8 8} for LRC checksum. 0x5C = 0x100 - (0x01 + 0x06 + 0x01 + 0x01 + 0x13 + 0x88) ⑴...
  • Page 171 Appendix C Modbus communication protocol C.9 CRC checkout mode CRC checkout value calculating function written by C language is as follows: unsigned int cal_crc_value (unsigned char *pval, unsigned char len) unsigned int crc_value=0xFFFF; unsigned int i; while(len--) crc_value ^= *pval++; for(i=0;...
  • Page 172: Appendix D Braking Unit And Braking Resistance

    制动单元与制动电阻 Appendix D Braking unit and braking resistance D.1 Braking unit and braking resistance The motor’s electric potential energy will charge inverter’s capacitance up reversely if speed of the motor descends too quickly or load of the motor wobbles too quickly while the inverter is running, which will increase the voltage upon power modules suddenly and is easy to make the inverter damaged.
  • Page 173 ShenZhen Encom Electric Technologies CO.,LTD. Address: 5-6F, Bldg.4, Minqi Technology Park, Lishan Rd., Nanshan Area, Shenzhen 518055, China Website: http://www.encvfd.com Email: encvfd@encvfd.com encvfd@enc.net.cn Tel: +86-755-26984485 Fax: +86-755-26985120...

Table of Contents