Noise Level In Ds / Qs Mode; Steadyclock - RME Audio Fireface UCX User Manual

Usb 2.0 / firewire 400 digital i/o system 8 + 8 + 2 channels analog / adat / spdif interface 24 bit / 192 khz digital audio 36 x 18 matrix router 2 x midi i/o stand-alone operation class compliant operation midi remote control
Hide thumbs Also See for Fireface UCX:
Table of Contents

Advertisement

32.7 Noise level in DS / QS Mode

The outstanding signal to noise ratio of the Fireface UCX AD-converters can be verified even
without expensive test equipment, by using record level meters of various software. But when
activating the DS and QS mode, the displayed noise level will rise from -111 dB to -107 dB at 96
kHz, and –93 dB at 192 kHz. This is not a failure. The software measures the noise of the whole
frequency range, at 96 kHz from 0 Hz to 48 kHz (RMS unweighted), at 192 kHz from 0 Hz to 96
kHz.
When limiting the measurement range from 20 Hz to 20 kHz (so called audio bandpass) the
value would be -111 dB again. This can be verified with RME's DIGICheck. The function Bit
Statistic & Noise measures the noise floor by Limited Bandwidth, ignoring DC and ultrasound.
The reason for this behaviour is the noise shaping technology of the analog to digital convert-
ers. They move all noise and distortion to the in-audible higher frequency range, above 24 kHz.
That's how they achieve their outstanding performance and sonic clarity. Therefore the noise is
slightly increased in the ultrasound area. High-frequent noise has a high energy. Add the dou-
bled (quadrupled) bandwidth, and a wideband measurement will show a significant drop in
SNR, while the human ear will notice absolutely no change in the audible noise floor.

32.8 SteadyClock

The SteadyClock technology of the Fireface UCX guarantees an excellent performance in all
clock modes. Thanks to a highly efficient jitter suppression, the AD- and DA-conversion always
operates on highest sonic level, being completely independent from the quality of the incoming
clock signal.
SteadyClock has been originally devel-
oped to gain a stable and clean clock
from the heavily jittery MADI data signal
(the embedded MADI clock suffers from
about 80 ns jitter). Using the Fireface's
input signals AES and ADAT, you'll
most probably never experience such
high jitter values. But SteadyClock is not
only ready for them, it would handle
them just on the fly.
Common interface jitter values in real
world applications are below 10 ns, a
very good value is less than 2 ns.
The screenshot shows an extremely jittery SPDIF signal of about 50 ns jitter (top graph, yellow).
SteadyClock turns this signal into a clock with less than 2 ns jitter (lower graph, blue). The sig-
nal processed by SteadyClock is of course not only used internally, but also used to clock the
digital outputs. Therefore the refreshed and jitter-cleaned signal can be used as reference clock
without hesitation.
User's Guide Fireface UCX © RME
96

Advertisement

Table of Contents
loading

Table of Contents