Digital Thermal Sensor - Intel 2ND GENERATION CORE PROCESSOR FAMILY MOBILE - DATASHEET VOLUME 1 01-2011 Datasheet

Hide thumbs Also See for 2ND GENERATION INTEL CORE PROCESSOR FAMILY MOBILE - DATASHEET VOLUME 1 01-2011:
Table of Contents

Advertisement

When transitioning to a target core operating voltage, a new VID code to the voltage
regulator is issued. The voltage regulator must support dynamic VID steps to support
this method.
During the voltage change:
• It will be necessary to transition through multiple VID steps to reach the target
operating voltage.
• Each step is 5 mV for Intel MVP-7.0 compliant VRs.
• The processor continues to execute instructions. However, the processor will halt
instruction execution for frequency transitions.
If a processor load-based Enhanced Intel SpeedStep Technology/P-state transition
(through MSR write) is initiated while the Adaptive Thermal Monitor is active, there are
two possible outcomes:
• If the P-state target frequency is higher than the processor core optimized target
frequency, the p-state transition will be deferred until the thermal event has been
completed.
• If the P-state target frequency is lower than the processor core optimized target
frequency, the processor will transition to the P-state operating point.
5.4.1.1.2
Clock Modulation
If the frequency/voltage changes are unable to end an Adaptive Thermal Monitor
event, the Adaptive Thermal Monitor will use clock modulation. Clock modulation is
done by alternately turning the clocks off and on at a duty cycle (ratio between clock
"on" time and total time) specific to the processor. The duty cycle is factory configured
to 25% on and 75% off and cannot be modified. The period of the duty cycle is
configured to 32 microseconds when the TCC is active. Cycle times are independent of
processor frequency. A small amount of hysteresis has been included to prevent
excessive clock modulation when the processor temperature is near its maximum
operating temperature. Once the temperature has dropped below the maximum
operating temperature, and the hysteresis timer has expired, the TCC goes inactive and
clock modulation ceases. Clock modulation is automatically engaged as part of the TCC
activation when the frequency/voltage targets are at their minimum settings. Processor
performance will be decreased by the same amount as the duty cycle when clock
modulation is active. Snooping and interrupt processing are performed in the normal
manner while the TCC is active.
5.4.1.2

Digital Thermal Sensor

Each processor execution core has an on-die Digital Thermal Sensor (DTS) that detects
the core's instantaneous temperature. The DTS is the preferred method of monitoring
processor die temperature because:
• It is located near the hottest portions of the die.
• It can accurately track the die temperature and ensure that the Adaptive Thermal
Monitor is not excessively activated.
Temperature values from the DTS can be retrieved through:
• A software interface using processor Model Specific Register (MSR).
• A processor hardware interface as described in
72
Thermal Management
Section
5.4.4.
Datasheet, Volume 1

Hide quick links:

Advertisement

Table of Contents
loading

Table of Contents