# The Legendre Function; The Pcoef Function; The Proot Function; The Ptayl Function - HP 48gII User Manual

Graphing calculator.

## The LEGENDRE function

A Legendre polynomial of order n is a polynomial function that solves the
1 (
differential equation
To obtain the n-th order Legendre polynomial, use LEGENDRE(n), e.g.,
LEGENDRE(3) = '(5*X^3-3*X)/2'
LEGENDRE(5) = '(63*X ^5-70*X^3+15*X)/8'

### The PCOEF function

Given an array containing the roots of a polynomial, the function PCOEF
generates an array containing the coefficients of the corresponding
polynomial.
The coefficients correspond to decreasing order of the
independent variable. For example: PCOEF([-2,–1,0,1,1,2]) = [1. –1. –5. 5.
4. –4. 0.], which represents the polynomial X

### The PROOT function

Given an array containing the coefficients of a polynomial, in decreasing
order, the function PROOT provides the roots of the polynomial. Example,
2
from X
+5X-6 =0, PROOT([1, –5, 6]) = [2. 3.].

### The PTAYL function

Given a polynomial P(X) and a number a, the function PTAYL is used to obtain
an expression Q(X-a) = P(X), i.e., to develop a polynomial in powers of (X- a).
This is also known as a Taylor polynomial, from which the name of the
function, Polynomial & TAYLor, follow:
For example, PTAYL('X^3-2*X+2',2) = 'X^3+6*X^2+10*X+6'.
In actuality, you should interpret this result to mean
Let's check by using the substitution: 'X = x – 2'. We recover the original
polynomial, but in terms of lower-case x rather than upper-case x.
2
d
y
dy
2
)
2
x
x
2
dx
dx
6
-X
'(X-2) ^3+6*(X-2) ^2+10*(X-2) +6'.
(
) 1
0
n
n
y
5
4
3
2
-5X
+5X
+4X
-4X.
Page 5-22