# Ker; Lagrange; Lap - HP 48gII Advanced User's Reference Manual

Graphing calculator.

{0: [1,-1]}, 2: [1,1]}
[0,2]}

## KER

Type:
Command
Description:
Computes the basis of the kernel of a linear application
Matrices, !Ø
Access:
Input:
A matrix representing a linear application
Output:
A list of vectors representing a basis of the kernel (also called the nullspace) of
Flags:
Exact mode must be set (flag –105 clear).
Numeric mode must not be set (flag -3 clear).
Example:
Find the kernel of
Command:
KER([1,1,2][2,1,3][3,1,4])
Result:
{[1,1,-1]}
BASIS, IMAGE

### LAGRANGE

Type:
Command
Description:
Returns the interpolating polynomial of minimum degree for a set of pairs of values. For two
pairs, DROITE will fit a straight line.
Arithmetic, !Þ
Access:
Input:
A two × n matrix of the n pairs of values.
Output:
The polynomial that results from the Lagrange interpolation of the data.
Flags:
Exact mode must be set (flag –105 clear).
Numeric mode must not be set (flag -3 clear).
Radians mode must be set (flag –17 set).
Example:
Find an interpolating polynomial for the data (1,6), (3,7), (4,8), (2,9)
Command:
LAGRANGE([[1,3,4,2][6,7,8,9]])
3
8x
63x
------------------------------------------------------- -
Result:
DROITE

### LAP

Type:
Function
Description:
Performs a Laplace transform on an expression with respect to the current default variable.
Calculus, !Ö
Access:
Input:
An expression.
Output:
The Laplace transform of the expression.
Flags:
Exact mode must be set (flag –105 clear).
Numeric mode must not be set (flag -3 clear).
Radians mode must be set (flag –17 set).
LINEAR APPL
1 1 2
2 1 3
3 1 4
L
POLY
2
+
151x 60
6
DIFFERENTIAL EQNS
.
f
in terms of the standard basis.
f
Computer Algebra Commands 4-45
f.