Rotor Cleaning; Stator Cleaning; Insulation Resistance; Drying Insulation - Siemens CGV Installation Operation & Maintenance

Induction motors/generators
Table of Contents

Advertisement

Maintenance
Cleaning
Clean the inside and outside of the motor regularly.
Actual conditions existing around the motor dictate
the frequency of cleaning operations.
following procedures as they apply.
1. Wipe off dust, dirt, oil, water, etc., from external
surfaces of the motor. These materials can work
into or be carried into the motor windings and
may cause overheating or insulation breakdown.
2. Remove dirt, dust, or other debris from ventilating
air inlets and exhausts. Do not operate motor
with air passages blocked or restricted.

Rotor Cleaning

Remove rotor.
Inspect air vents and remove any
obstructions.

Stator Cleaning

MICLAD™ form wound VPI (vacuum pressure
impregnated) insulated coils may be cleaned with a
quick drying solvent and lint free cloths or steam
cleaned with low-pressure steam, then the entire
stator oven baked at 200°F for 12 hours and then
230°F for 12 hours.
The stator winding insulation resistance should be
measured before and after any cleaning operation.
The windings may be cleaned with a solvent
compatible with the insulation system and oven dried.
Water and detergents with an oven drying cycle may
be used as an alternate on MICLAD™ VPI insulation
systems.
MICLAD™ is a Siemens trademark.
Hazardous voltage.
Will cause death, serious injury,
electrocution or property damage.
Disconnect all power before working
on this equipment.
CAUTION
High Voltage.
May damage semi-conductors, small transformers,
voltage regulators, and other devices.
Disconnect from circuit before testing insulation
resistance.
Use the
DANGER

Insulation Resistance

Check insulation resistance periodically. Use a hand
cranked or solid state insulation resistance tester and
test with at least 500 volts, but not greater than motor
rated voltage.
For motors with newer insulation systems such as
MICLAD™ VPI, the insulation resistance after one
minute should be greater than 1000 megohms.
(Values in excess of 5000 megohms are common.)
For older motors, the minimum value recommended
in IEEE Standard 43 can be used. The value in
megohms, when corrected to 40°C, is equal to the
motor rated voltage in kilovolts plus 1. For example,
for a motor with a rated voltage of 2300 volts, the limit
value would be:
2.3 + 1 = 3.3 (megohms).

Drying Insulation

If the insulation resistance is less than satisfactory,
and the cause is believed to be excessive moisture in
the windings, dry the windings by applying heat from:
1. A warm air oven.
2. Electric strip heaters.
3. Circulating currents through the coils.
The heat should be applied slowly so the desired
temperature will not be obtained in less than six
hours.
Insulation Drying Temperature*
Class "B"
200°F
94°C
*Class "F" and "H" insulated units should be baked at 70%
specified temperature (to avoid steam inside winding) for about
six hours, before temperature is raised to drying temperature.
Insulation resistance should be measured before the
heat is applied, and every six to eight hours
thereafter.
NOTE
Insulation resistance will decrease as the motor warms
up; but will begin to increase as the drying process
continues.
- 17 -
Class "F"
Class "H"
245°F*
275°F*
118°C
135°C

Advertisement

Table of Contents
loading

This manual is also suitable for:

CghsCgiivCgiihsCggvCgghsCazv ... Show all

Table of Contents