Download  Print this page

Clock Implementation - GE UR Series Instruction Manual

Line differential relay.
Hide thumbs
   
1
2
3
4
Table of Contents
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

Advertisement

8.1 OVERVIEW
where: T
= the time between execution of the filter algorithm
repeat
T
= time constant for the primary phase locked loop
phase
T
= time constant for the frequency locked loop
frequency
The recommended time constants are 10 seconds for the time stamp phase locking, and 1000 seconds for frequency track-
ing. The time step for the integrators is 1/60 of a second, so all of the integrator gains are small.
Another new invention in the L90 relay system is the clock. Using the conventional approach to implementing a digital clock
to achieve the desired goal for phase uncertainty of 0.01 radians. A variation of the concept used in sigma delta modulation
can be used to greatly extend the effective resolution of the clock. For example, it is possible to get the effective resolution
of a 32 bit counter and a 400 GHz oscillator without much trouble.
The concept is to implement a fractional count. The concept as applied in the L90 digital current differential relay is dis-
cussed below:
The existing crystal clock and 16 bit counter are used to control both time stamping and data sampling. The counter is
loaded with a desired period, which is in effect for four data samples. Each time the period is counted out, data is sampled.
After 4 samples (1/16 of a cycle), the counter is reloaded, possibly with a new value. The new idea is implemented com-
pletely in software.
Time periods between data samples are computed as a 32 bit multiple of the period of the clock, with a 16 bit integer and a
16 fraction. Two separate 16 bit registers are used to control the clock. One register controls the integer portion of the time
period, the other is used to control the fractional portion. The integer register is used to reload the hardware counter every
four samples.
There are two possible reload values for the counter: either the value in the integer register is used directly, or one is added
to it, depending on the contents of the fraction register. The fraction register is used to carry a running total of the fractional
portion of the desired time period. Each time the hardware counter is reloaded, the fractional portion of the desired period is
added to the fractional register, occasionally generating a carry. Whenever a carry is generated, the counter reload value
for the next period is increased by one for that period only. The fractional register is never reset, even when the desired
period changes. Other clock related functions include time stamps and sequence numbers.
Phase noise analysis indicates that not many bits are needed for time stamps because of the smoothing effects of the loop
filter. Basically, a simple integer count of the number of samples is adequate. That is, a resolution of 260 microseconds in
the time stamps is adequate. Assuming a worst round trip channel delay of 4 cycles, an 8 bit counter is adequate for time
stamping. Every 1/64 of a cycle when data is sampled, an 8 bit counter should be incremented and allowed to simply roll
over to 0 after a count of 255 which should occur exactly every 4 cycles at the beginning of the cycle. Whenever a time
stamp is needed, the time stamp counter is simply read.
A message sequence number is also needed with a granularity of 1/2 cycle. A message sequence number can be simply
extracted from the 4 high order bits of the time stamp counter. Since the time stamps may or may not have any relationship
to the message sequence number in a message, both are needed.
8
An algorithm is needed to match phaselets, detect lost messages, and detect communications channel failure. Channel
failure is defined by a sequence of lost messages, where the length of the sequence is a design parameter. In any case, the
sequence should be no longer than the maximum sequence number (4 cycles) in order to be able to match up messages
when the channel is assumed to be operating normally.
A channel failure can be simply detected by a watchdog software timer which times the interval between consecutive
incoming messages. If the interval exceeds a maximum limit, channel failure is declared and the channel recovery process
is initiated.
While the channel is assumed to be operating normally, it is still possible for an occasional message to be lost, in which
case fault protection is suspended for the time period that depends on that message, and is resumed on the next occa-
sional message. A lost message is detected simply by looking at the sequence numbers of incoming messages. A lost
message will show up as a gap in the sequence.
Sequence numbers are also used to match messages for the protection computation. Whenever a complete set of current
measurements from all terminals with matching sequence numbers are available, the differential protection function is com-
puted using that set of measurements.
8-12
L90 Line Differential Relay
8 THEORY OF OPERATION

8.1.13 CLOCK IMPLEMENTATION

8.1.14 MATCHING PHASELETS
GE Power Management

Advertisement

Table of Contents

   Also See for GE UR Series

   Related Manuals for GE UR Series

This manual is also suitable for:

L90

Comments to this Manuals

Symbols: 0
Latest comments: