Page 3
Trademarks NuDAM is registered trademarks of ADLINK Technology Inc., Other product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of...
Page 4
Getting service from ADLINK ♦ Customer Satisfaction is always the most important thing for ADLINK Tech Inc. If you need any help or service, please contact us and get it. ADLINK Technology Inc. Web Site http://www.Adlink.com.tw Sales & Service service@Adlink.com.tw...
Table of Contents CHAPTER 1 INTRODUCTION ..........1 DAM A ......1 BOUT THE NALOG NPUT ODULES DAM -6011/D..........1 VERVIEW OF DAM -6012/D..........6 VERVIEW OF DAM -6013 ..........10 VERVIEW OF DAM -6014D..........13 VERVIEW OF DAM -6017 ..........17 VERVIEW OF DAM -6018 ..........
Page 6
3.21 CJC S ........59 EAD ENABLE DISABLE TATUS 3.22 N ..60 HERMOCOUPLE ETECTION OF HANNEL 3.23 ..... 62 NABLE ISABLE HERMOCOUPLE ETECTION 3.24 ..63 OURCE ALUES FOR INEAR APPING 3.25 ..64 ARGET ALUES FOR INEAR APPING 3.26 ..
Display. Overview of NuDAM-6011/D What is NuDAM-6011/D ? NuDAM-6011/D is a multi-functions analog input module with cold junction compensation (CJC). The maximum input voltage range of analog input channel is ±2.5V. The high gain feature allows very small full range of ±15mV. To measure temperature by directly connect the thermocouple is possible because of using the CJC inside and the high gain feature.
Page 8
For example, connecting relay devices to DO channels, the NuDAM-6011/D can be used to control the high power devices. The module provides another one digital input channel. This can be used for general purpose such as monitor digital signal, or be used as input of the event counter.
Page 9
Module internal watchdog timer: 150 ms • Power failure threshold: 4.65 V • Safety value: 2 digital output channels • Host programmable watchdog: 100 ms ~ 25.500 sec ² Power • Power supply: +10V to +30V • Current consumption: 0.76W(1.68W for NuDAM-6011/D) Introduction • 3...
Page 10
Pin Definitions of ND-6011/D Pin # Signal Name Description Analog Input Positive Terminal Analog Input Negative Terminal DO 1/ HI Digital Output Channel 1 or High alarm status output DI 0 / EV Digital Input Channel 0 or event counter input DO 0 / LO Digital Output Channel 0 or Low alarm output...
Page 11
A Look at ND-6011/D & Pin Assignment T / C ( - ) T / C ( + ) High Gain Analog Input N D - 6 0 1 1 Code mV/mA Code J Type K Type 1 0 0 m V T T y p e 500 mV E T y p e...
±10V maximum to ±150mV minimum. The module also provides the alarm function and the event counter just like NuDAM-6011/D. In fact, the NuDAM-6012/D provides almost all functions that NuDAM-6011/D has except the CJC and temperature measurement function.
Page 13
² Digital Output • Channel numbers: 2 • Output characteristic: open collector transistor • Maximum current sink: 50mA • Max. power dissipation: 300mW ² Digital Input • Channel numbers: 1 • Logical level 0: +1V maximum • Logical level 1: +2.0V~30V •...
Page 14
Pin Definitions of ND-6012/D Pin # Signal Name Description Analog Input Positive Terminal Analog Input Negative Terminal DO 1/ HI Digital Output Channel 1 or High alarm status output DI 0 / EV Digital Input Channel 0 or event counter input DO 0 / LO Digital Output Channel 0 or Low alarm output...
Page 15
A Look at ND-6012/D & Pin Assignment High Gain Analog Input N D - 6 0 1 2 Code mV/mA 500 mV 150 mV 100 mV 0 - 20 mA Introduction • 9...
Overview of NuDAM-6013 What is NuDAM-6013 ? NuDAM-6013 is a RTD input module with 3 input channels. It supports 2, 3 or 4 wires RTD input device. Features of NuDAM-6013 • 3 RTD input channels • 2, 3 or 4 wire RTD input support •...
Page 17
Pin Definitions of ND-6013 Pin # Signal Name Description +IEXC0 Current source of CH0 +SENSE0 Differential positive input of CH0 -SENSE0 Differential negative input of CH0 -IEXC0 Current source of CH0 AGND0 Analog signal ground of CH0 DEFAULT* Initial state setting (Y) DATA+ RS-485 series signal, positive (G) DATA-...
Page 18
A Look at ND-6013 & Pin Assignment 3-CH RTD Input N D - 6 0 1 3 α =0.00385 α =0.003916 Code Input Range Code Input Range Pt.-100°C~+100°C Pt.-100°C~+100°C Pt. 0°C~+100°C Pt. 0°C~+100°C Pt. 0°C~+200°C Pt. 0°C~+200°C Pt. 0°C~+100°C Pt. 0°C~+100°C °...
Overview of NuDAM-6014D What is NuDAM-6014D ? NuDAM-6014D is a multi -functions analog(transmitter) input module with LED display. The programmable input voltage range of analog input channel is from ±10V maximum to ±150mV minimum. The module also provides the alarm function and the event counter just like NuDAM-6012/D.
Page 20
² Digital Output • Channel numbers: 2 • Output characteristic: open collector transistor • Maximum current sink: 50mA • Max. power dissipation: 300mW ² Digital Input • Channel numbers: 1 • Logical level 0: +1V maximum • Logical level 1: +2.0V~30V •...
Page 21
Pin Definitions of ND-6014D Pin # Signal Name Description +15V External +15V IIN+ Current Input Positive Terminal IIN- Current Input Negative Terminal DEFAULT* Initial state setting (Y) DATA+ RS-485 series signal, positive (G) DATA- RS-485 series signal, negative (R) +Vs Power supply, +10V~+30V (B) GND Ground...
Page 22
A Look at ND-6014D & Pin Assignment Transmitter Input Module N D - 6 0 1 4 D C o d e m V / m A ± 1 0 V / 2 5 V / ± 1 V 0 8 / 0 9 / 0 A ±...
Overview of NuDAM-6017 What is NuDAM-6017 ? NuDAM-6017 is an analog input module with 8 input channels. Six of the eight channels are differential type and the other two are single ended type. Features of NuDAM-6017 • 8 analog input channels •...
Page 24
Pin Definitions of ND-6017 Pin # Signal Name Description Vin5+ Differential positive input channel 5 Vin5- Differential negative input channel 5 Vin6+ Single-ended voltage input channel 6 AGND Analog signal ground o f CH6 & 7 Vin7+ Single-ended voltage input channel 7 DEFAULT* Initial state setting (Y) DATA+...
Page 25
A Look at ND-6017 & Pin Assignment 8-CH Analog Input N D - 6 0 1 7 mV/mA C O D E 500 mV 150 mV 100 mV 0 - 20 mA Introduction • 19...
Overview of NuDAM-6018 What is NuDAM-6018 ? NuDAM-6018 is a thermocouple input module with 8 input channels. Six of the eight channels are differential type and the other two are single ended type. Features of NuDAM-6018 • 8 analog input channels •...
Page 27
Note : The maximum input voltage shall not exceed to ±30V with reference to AGND otherwise, they may cause an unrecoverable harm to the hardware component. Note : F/W version above C4.30 support K-type for 0~1370° C. Lower version supports K-type for 0~1000° C. Pin Definitions of ND-6018 Pin # Signal Name...
Page 28
A Look at ND-6018 & Pin Assignment Multiple Analog Input 8-CH Analog Input ND-6018 N D - 6 0 1 7 mV/mA C O D E Code mV/mA Code ±15mV J Type ±50mV K Type ±100mV T Type ±500mV E Type 500 mV ±1V R Type...
I n i t i a l i z a t i o n & I n s t a l l a t i o n Software Installation 1. If you have already installed “NuDAM Administration” then skip other steps.
Page 30
NuDAM-6011/D, NuDAM-6012/D, NuDAM-6013, NuDAM-6014D, NuDAM-6017, and NuDAM-6018. Default State The NuDAM modules must be set at when you want to D e f a u l t S t a t e change the default settings, including the ID address, baud rate, check-sum status etc.
Initialization Wiring NuDAM-6520 RS-232/RS-485 NuDAM Converter Host module Computer DATA + DATA+ DATA - DATA - RS-232 Default* Local Power Supply +10 V to +30 V Figure 2 -1 Layout for Initialization the NuDAM module Install a New NuDAM to a Existing Network Equipments for Install a New Module •...
D i f f e r e n t i a l A n a l o g I n p u t C h a n n e l o f Differential Analog Input Channel of NuDAM-6011/D/6012/D/6017/6018 N u D A M - 6 0 1 1 / 6 0 1 2 / 6 0 1 7 / 6 0 1 8...
Page 33
Digital Input Connect with TTL Signal N u D A M -6 0 1 1 D / 6 0 1 2 D D i g i t a l I n p u t C h a n n e l + 5 V T T L B u f f e r D I 0...
C o m m a n d S e t Command and Response Introduction The NuDAM command is composed by numbers of characteristics, including the leading code, address ID, the variables, the optional check-sum bytes, and a carriage return to indicate the end of a command.
Page 39
Format of NuDAM Commands (Leading Code)(Addr)(Command)[Data][Checksum]<CR> When checksum is enable then [Checksum] is needed, it is 2-character. Both command and response must append the checksum characters. How to calculate checksum value ? [Checksum] = (LeadingCode)+(Addr)+(Command)+[Data] ) MOD 0x100 Example 1: checksum is disable User Command: $012<CR>...
Response of NuDAM Commands The response message depends on versatile NuDAM command. The response is composed with a few characteristics, including leading code, variables, and carriage return for ending. There are two categories of leading code for response message, ”!“ or ”>“ means valid command and ”?“...
Page 41
6011/D, Read Synchronized $(Addr)4 6012/D, 3-16 Analog Data 6014D 6011/D, Read Analog Data #(Addr) 3-17 6012/D, 6014D Read Analog Data #(Addr) 6013 3-17 Channel 0 Span Calibration $(Addr)0 3-18 Span Calibration to each $(Addr)0(Channel No) 6013 3-19 Channel Offset Calibration $(Addr)1 3-20 Offset Calibration to each...
Page 42
Read Target High/Low Values for Linear $(Addr)5 6014D 3-33 Mapping Write Source High/Low $(Addr)6(Data_L)(Data_H) Values for Linear 6014D 3-34 Mapping Write Target High/Low Values for Linear $(Addr)7(Data_L)(Data_H) 6014D 3-35 Mapping Enable/Disable Linear $(Addr)A(Status) 6014D 3-36 Mapping Read Enable/Disable $(Addr)R 6014D 3-37 Linear Mapping Status 6011/D,...
Page 43
6012/D, 6014D 6011/D, Read Low Alarm @(Addr)RL 6012/D, 3-50 6014D Special Commands Read Command Leading ~(Addr)0 3-51 Code Setting Change Command ~(Addr)10(C1)(C2)(C3) 3-53 Leading Code Setting (C4)(C5)(C6) Set Host Watchdog / ~(Addr)2(Flag) 3-55 Safety Value (TimeOut)(SafeValue) Read Host WatchDog / ~(Addr)3 3-57 Safe Value...
(6011/D, 6012/D, 6013 Set Configuration 6014D, 6017, 6018) @Description Configure the basic setting of NuDAM, including the address ID, input range, baud rate, and data format. The new configuration will be available after executing the command. @Syntax %(OldAddr)(NewAddr)(InputRange)(BaudRate)(DataFormat)<CR > Command leading code. (1-character) (OldAddr) NuDAM module original address ID.
Page 45
Note: 1. When you want to change the checksum or baud rate, the DEFAULT* pin must be grounded at first. 2. Waiting a maximum of 7 seconds to perform auto calibration and ranging after the analog input module is reconfigured. Please don’t execute any other command during this time period.
Page 46
Code (Hex) Input Range Modules ± 6011/D,6018 15 mV ± 6011/D,6018 50 mV ± 6011/D,6018 100 mV ± 6011/D,6018 500 mV ± 6011/D,6018 ± 6011/D,6018 2.5 V ± 20 mA 6011/D,6018 Ω (Required 125 current conversion resistor.) 6012/D,6017, ± 10 V 6014D 6012/D,6017, ±...
Page 47
Code Baudrate 1200 bps 2400 bps 4800 bps 9600 bps 19200 bps 38400 bps 115200 bps Table 3 -2 Baud rate setting code Reserved Must to be 0 Checksum 0: disable 1: enable Analog Input Data Format 00: Engineering units 01: % of Full Scale Range 10: Two’s complement of hexadecimal 11: Ohms (6013 only)
Read Module Name (6011/D, 6012/D, 6013 6014D, 6017, 6018) @Description Read module name of NuDAM at specified address. @Syntax $(Addr)M<CR> Command leading code. (Addr) Address ID Read module name @Response !(Addr)(ModuleName) <CR> ?(Addr)<CR > Command is invalid. Command is invalid. (Addr) Address ID.
Synchronized Sampling (6011/D, 6012/D, 6014D) @Description Synchronized all modules to sample analog input values and stored the values in the module’s register at the same time. The sampled data can be read by “Read Synchronized Data” command. @Syntax #**<CR > Command leading code.
Read Synchronized Data (6011/D, 6012/D, 6014D) @Description After a synchronized sampling command #** was issued, you can read the sampled value that was stored in the register of the module at specified address. @Syntax $(Addr)4<CR > Command leading code. (Addr) Address ID Read synchronized data.
3.10 Read Analog Data (6011/D, 6012/D, 6013, 6014D) @Description Read the analog input value from an analog input module at specified address in a NuDAM network. While for ND-6013, it returns the channel 0 analog data. @Syntax #(Addr)<CR> Command leading code (Addr) Address ID @Response...
3.11 Span Calibration (6011/D, 6012/D, 6013 C4.6 6014D, 6017, 6018) @Description To correct the gain errors of AD converter by using the span calibration. @Syntax $(Addr)0<CR> Command leading code (1 character) (Addr) Address ID (2 character) Span calibration (1 character) @Response !(Addr)<CR>...
3.12 Span Calibration to each Channel (for 6013 F/W version A3.05~A4.60) @Description To correct the gain errors of AD converter by using the span calibration. @Syntax $(Addr)0(Channel No)<CR> Command leading code (1 character) (Addr) Address ID (2 character) Span calibration (1 character) (Channel No) Channel for Calibration (1 character) 0~2 @Response...
3.13 Offset Calibration (6011/D, 6012/D, 6013 C4.6 and above, 6014D, 6017, 6018) @Description To correct the offset errors of AD converter by using the offset calibration. @Syntax $(Addr)1<CR> Command leading code (Addr) Address ID Offset calibration. @Response !(Addr)<CR> ?(Addr)<CR > Command is valid.
3.14 Offset Calibration to each Channel (6013) (for 6013 F/W version A3.05~A4.60) @Description To correct the offset errors of AD converter by using the offset calibration. @Syntax $(Addr)1(Channel No)<CR> Command leading code (Addr) Address ID Offset calibration. (Channel No) Channel for calibration.(1 character)0~2 @Response !(Addr)<CR>...
3.15 Read Analog Data From Channel N (6013, 6017, 6018) @Description Read the analog input value of a specified AD channel from an analog input module at specified address in a NuDAM n etwork. @Syntax #(Addr)(ChannelNo)<CR> Command leading code. (1-character) (Addr) Address ID.
3.16 Read All Analog Data Channel (6013, 6017, 6018) @Description Read all the enable analog input channel value of a specified from an analog input module at specified address in a NuDAM network. @Syntax #(Addr)A<CR> Command leading code. (1-character) (Addr) Address ID.
3.17 Enable/Disable channels for Multiplexing (6013, 6017, 6018) @Description Enable/Disable multiplexing simultaneously for indivi dual channel. @Syntax $(Addr)5(ChannelVal)<CR> Command leading code. (1-character) (Addr) Address ID (2-character) Enable/Disable channel. (1-character) (ChannelVal) bit 3~0 of 1st character: control channel 7 - 4. bit 3~0 of 2nd character: control channel 3 - 0.
3.18 Read Channel Status (6013, 6017, 6018) @Description Read the enable/disable status the channels of ND-6013, ND-6017 or 6018. @Syntax $(Addr)6<CR> Command leading code. (1-character) (Addr) Address ID (2-character) Read channel status. (1-character) @Response !(Addr)(ChannelVal)<CR> ?(Addr)<CR > Command is invalid. Command is invalid.
3.19 Read CJC Status (6011/D, 6018) @Description Read the CJC (Cold Junction Compensation) sensors data. @Syntax $(Addr)3<CR> Command leading code. (Addr) Address ID Read CJC status. @Response >(Data)<CR> ?(Addr)<CR > > Command is invalid. (Data) CJC sensor’s data. Data format is engineering units. (an + or - sign with five decimal digits and a decimal fixed point.
3.22 Read Open Thermocouple Detection of Channel N (6011/D, 6018) @Description Read the status of open thermocouple from specified channel number or all channel. @Syntax $(Addr)B(ChannelNo)<CR> Command leading code. (Addr) Address ID Open thermocouple detection command code ChannelNo Channel number, range( 0-7) for specified channel, A for all the channel @Response !(Addr)(OpSts)<CR>...
Page 67
@Example User command: $01B0<CR> Response: !011<CR> Command is valid. Address ID. Open thermocouple of channel 0 User command: $01BA<CR> Response: !1FE<CR> Command is valid. Address ID. Open thermocouple of channel 1~7 Close thermocouple of channel 0 The open detection function is immediate scanning by hardware Notice: every 500ms.
3.23 Enable/Disable Open Thermocouple Detection (6018) @Description Enable and disable the open thermocouple detection function. @Syntax $(Addr)O(Status)<CR> Command leading code. (Addr) Address ID Enable/Disable Open thermocouple detection command (Status) 0: Disable Open thermocouple detection 1: Enable Open thermocouple detection @Response !(Addr)<CR>...
3.24 Read Source High/Low Values for Linear Mapping (6014D) @Description Read the high/low limit values from input for linear mapping. @Syntax $(Addr)3<CR> Command leading code. (Addr) Address ID Read the high/low limit values from input for linear mapping . @Response !(Addr)(Data_L)(Data_H)<CR>...
3.25 Read Target High/Low Values for Linear Mapping (6014D) @Description Read the mapped high/low limit values from input for linear mapping. @Syntax $(Addr)5<CR> Command leading code. (Addr) Address ID Read the mapped high/low limit values from input for linear mapping . @Response !(Addr)(Data_L)(Data_H)<CR>...
3.26 Write Source High/Low Values for Linear Mapping (6014D) @Description Write the source high/low limit values from input for linear mapping. @Syntax $(Addr)6(Data_L)(Data_H)<CR> Command leading code. (Addr) Address ID Set the high/low limit values from input for linear mapping . Low limit input value for linear mapping.
3.27 Write Target High/Low Values for Linear Mapping (6014D) @Description Write the target high/low limit values from input for linear mapping. @Syntax $(Addr)7(Data_L)(Data_H)<CR> Command leading code. (Addr) Address ID Set the mapped high/low limit values from input for linear mapping . (Data_L) Mapped low limit input value for linear mapping.
3.28 Enable/Disable Linear Mapping (6014D) @Description Enable or disable the linear mapping function for the module. @Syntax $(Addr)A(Status)<CR> Command leading code. (Addr) Address ID Reference to control the linear mapping function. (Status) One char to determine the linear mapping function enable or disable.
3.29 Read enable/Disable Linear Mapping Status (6014D) @Description Read enable or disable the linear mapping status for the module. @Syntax $(Addr)R<CR> Command leading code. (Addr) Address ID Read to the linear mapping status. @Response !(Addr)(Status)<CR> ?(Addr)<CR> Command is invalid. (Addr) Address ID.
CJC Offset Calibration 3 . 3 0 (6011/D, 6018) @Description To correct the CJC offset errors use CJC (Cold Junction Compensation) offset calibration. @Syntax $(Addr)9(Counts)<CR> Command leading code (Addr) Address ID CJC offset calibration. (Counts) It is a 4-characters (Hexadecimal) with a sign + or -, range is 0000 to FFFF, each count equals approximately 0.0153°C.
3.32 Clear Event Counter (6011/D, 6012/D, 6014D) @Description Reset the event counter to zero at specified analog input module. @Syntax @(Addr)CE<CR> Command leading code. (Addr) Address ID Clear event counter. @Response !(Addr)<CR> Command is valid. (Addr) Address ID. @Example User command: @06CE<CR>...
3.34 Read Digital I/O and Alarm Status (6011/D, 6012/D, 6014D) @Description Read the digital input channel, digital output channel and the alarm state at specified analog input module. @Syntax @(Addr)DI<CR> Command leading code. (Addr) Address ID Read digital I/O and alarm state. @Response !(Addr)(Alarm)(DigitalO)(DigitalI)<CR>...
Page 80
@Example User command: @06DI<CR> Response: !0620301<CR> Item Meaning Description (Leading Code) Command leading code. (Addr) Analog module’s address ID is 06H. (Alarm) 2 means alarm state is LATCH. (DigitalO) Digital output channel status. 03: channel 0 is ON channel 1 is ON (DigitalI) Digital input channel status 01: digital input is HIGH.
3.35 Set Digital Output (6011/D, 6012/D, 6014D) @Description Set digital output channel at specified module. @Syntax @(Addr)DO(OutData)<CR> Command leading code. (Addr) Address ID Set digital output (OutData) Digital output data .(2 - characters) 00: bit 1 is OFF, bit 0 is OFF. 01: bit 1 is OFF, bit 0 is ON.
3.37 Set High Alarm (6011/D, 6012/D, 6014D) @Description Set high alarm limit value at specified analog input module. @Syntax @(Addr)HI(Data)<CR> Command leading code. (Addr) Address ID Set high alarm limit value. (Data) Alarm high limit value. Data format is engineering units. (an + or - sign with five decimal digits and a decimal fixed point.
3.38 Set Low Alarm (6011/D, 6012/D, 6014D) @Description Set low alarm limit value at specified analog input module. @Syntax @(Addr)LO(Data)<CR> Command leading code (Addr) Address ID Set low alarm limit value. (Data) Alarm low limit value. Data format is engineering units. (an + or - sign with five decimal digits and a decimal fixed point.
3.39 Read Event Counter (6011/D, 6012/D, 6014D) @Description Read the event counter value at specified analog input module. @Syntax @(Addr)RE<CR> Com mand leading code. (Addr) Address ID Read event counter. @Response !(Addr)(Data)<CR> Command is valid. (Addr) Address ID. (Data) 5-character (Decimal), range 00000 to 65535, if the event counter exceed 65535 then event counter value is 65535 (No changed).
3.40 Read High Alarm Limit (6011/D, 6012/D, 6014D) @Description Read the high alarm limit at specified analog input module. @Syntax @(Addr)RH<CR> Command leading code. (Addr) Address ID Read high alarm limit. @Response !(Addr)(Data)<CR> Command is valid. (Addr) Address ID. (Data) High alarm limit value.
(6011/D, 6012/D, 6013 3.42 Read Leading Code Setting 6014D, 6017, 6018) @Description Read command leading code setting and host watchdog status. @Syntax ~(Addr)0<CR > Command leading code. (Addr) Address ID Read command leading code setting. @Response !(Addr)(Status)(C1)(C2)(C3)(C4)(C5)(C6)<CR> ?(Addr)<CR > Command is valid. Command is invalid.
Page 89
(C5) Leading code 5, for read command leading code, change command leading code, etc. default is ~. (1-character) (C6) Leading code 6, this leading code is reserved. default is . (1-character) @Example User command: ~060<CR> Response: !0600$#%@~*<CR> Command leading code setting is $#%@~* for module address ID is 06, current status is factory default setting.
3.43 Change Leading Code Setting (6011/D, 6012/D, 6013 6014D, 6017, 6018) @Description User can use this command to change command leading code setting as he desired. @Syntax ~(Addr)10(C1)(C2)(C3)(C4)(C5)(C6)<CR> Command leading code. (Addr) Address ID, range (00 - FF). Change command leading code setting. (C1) Leading code 1, for read configuration status, firmware version, etc.
Page 91
@Examples User command: ~060<CR> Response: !0600$#%@~*<CR> User command: ~0610A#%@~*<CR> Response: !06<CR> User command: A06F Response: !06A1.8<CR> Read leading code setting is $#%@~* for module address 06 and change leading code $ to A, then use A06F to read firmware version of module on address 06.
3.44 Set Host Watchdog Timer & Safety Value (6011/D, 6012/D, 6013 6014D, 6017, 6018) @Description Set host watchdog timer, module will change to safety state when host is failure. Define the output value in this command. @Syntax ~(Addr)2(Flag)(TimeOut)(SafeValue)<CR> Command leading code. (Addr) Address ID, range (00 - FF).
Page 93
@Example User command: ~06211203<CR> Response: !06<CR> Address ID Set host watchdog timer and safe state value. Enable host watchdog timer. Timeout value. 0x12 = 18 18 * 100 = 1800 ms 03 (00000011) The two digital output channels are high as failure or reset. Command Set •...
3.46 Host is OK (6011/D, 6012/D, 6013 6014D, 6017, 6018) @Description When host watchdog timer is enable, host computer must send this command to every module before timeout otherwise “host watchdog timer enable” module‘s output value will go to safety state output value.
D a t a F o r m a t a n d I n p u t R a n g e Data Format of Analog Input Modules There are four types of data format used in analog input modules. Engineering units Percent of FSR (Full Scale Range) Two’s complements hexadecimal...
Page 97
Input Range Resolution ±15 mV, ±50 mV three decimal places 1µV ±100 mV, ±150 mV, ±500 mV two decimal places 10µV ±1 V, ±2.50 V, ±5 V four decimal places 100µV ±10 V three decimal places ±20 mA three decimal places 1µA Type J and T thermocouple, RTD two decimal places...
Page 98
• Data is sign (+ or - ) followed with 5-digits and a decimal point. • It does not exceed 7-characters. • Maximum resolution is 0.01%, the decimal point is fixed. • Data is the ratio of input signal to the value of full scale range. Example 1: •...
Page 99
Two’s complement hexadecimal: CD27<CR> ((-2/5) x 32768) = -13107.2 = CD27H Example 3: • Input Range is ±10 V • Input is +4 Volts Two’s complement hexadecimal: 3333<CR> ((4/10) x 32768) = 13107.2 = 3333H Example 4: • Input Range is Type K thermocouple (range 0°C to 1000°C) •...
Analog Input Range The following table shows the relation between the input range setting with the data format and the resolution. Engineering Units Table: Input Data +Full - Full Displayed Code Zero Range Format Scale Scale Resolution ± ± µ 15mV 00.000 Eng.
Page 101
° ° Pt-100, 0 C to +200 ° 0.01 Eng. Units +200.00 +000.00 +000.00 α =0.003916 ° ° Pt-100, 0 C to +600 ° 0.01 α Eng. Units +600.00 +000.00 +000.00 =0.003916 ° ° ° Ni-100, 0 C to +100 0.01 Eng.
Page 102
Tow‘s Complement Table: Input Data +Full - Full Displayed Code Zero Range Format Scale Scale Resolution ± 15mV 2’s Comp. 7FFF 0000 8000 1 LSB ± 50mV 2’s Comp. 7FFF 0000 8000 1 LSB ± 100mV 2’s Comp. 7FFF 0000 8000 1 LSB ±...
Page 103
The following table shows the relation between the input range setting with the data format and the resolution when using ND-6011/D or 6018 to measure temperature by thermocouple. Input Range Data Displayed Code Maximum Minimum Format Resolution Thermocouple ° ° °...
C a l i b r a t i o n How to Calibrate the Analog Input Modules ? What do you need to do calibration ? One 5 1/2 digit multimeter A voltage calibrator or very stable and noise free DC voltage generator.
Page 105
Apply the correct offset resistance to the analog input module ND-6013 channel 0, detail resistance value, see table 5 -2 Send “Offset Calibration $(Addr)10” to analog input module ND-6013 channel 0 . Apply the correct span resistance to the analog input module ND-6013 channel 0, detail resistance value, see table 5 -2 Send “Span Calibration $(Addr)00”...
Page 106
Calibration Procedure for ND-6018 Firmware Rev B1.10 1. Disable all the channel and open detect function 2. Select the correct input range, different input range have different apply calibration voltage. Apply the correct offset voltage to channel 0, detail voltage value, see table 5-1.
Page 107
Calibration Procedure for ND-6018 Firmware Rev E1.00 and e1.00 Power off the module. Connect the default pin to GND.(Because the calibration procedures must be run under default mode). Power on the module and use utility searching the module. There must a “*” before the address ID. Disable open detect function by sending command “$00O0”.
Page 108
Send “CJC Offset Calibration $(Addr)9(+0000)” to set initial CJC offset value to zero. Repeat step 6, then proceed to step 10. 10. Send “CJC Offset Calibration $(Addr)9(Counts)” to correct the CJC offset error.(counts is a 4 -characters with a sign + or -,range is 0000 to FFFF, each count equals approximately 0.0153 °C).
P r o d u c t W a r r a n t y / S e r v i c e Seller warrants that equipment furnished will be free form defects in mate rial and workmanship for a period of one year from the confirmed date of purchase of the original buyer and that upon written notice of any such defect, Seller will, at its option, repair or replace the defective item under the terms of this warranty, subject to the provisions and specific exclusions listed herein.
Need help?
Do you have a question about the NuDAM-6011 and is the answer not in the manual?
Questions and answers